हिंदी

The Sum of Two Non-zero Numbers is 8, the Minimum Value of the Sum of the Reciprocals is (A) 1 4 (B) 1 2 (C) 1 8 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .

विकल्प

  • \[\frac{1}{4}\]

  • \[\frac{1}{2}\]

  • \[\frac{1}{8}\]

  • none of these

MCQ

उत्तर

\[\frac{1}{2}\]

 

\[\text { Let the two non - zero numbers be x and y . Then,} \]

\[x + y = 8\]

\[ \Rightarrow y = 8 - x ............\left( 1 \right)\]

\[\text { Now,} \]

\[f\left( x \right) = \frac{1}{x} + \frac{1}{y}\]

\[ \Rightarrow f\left( x \right) = \frac{1}{x} + \frac{1}{8 - x} ..................\left[ \text { From eq. } \left( 1 \right) \right]\]

\[ \Rightarrow f'\left( x \right) = \frac{- 1}{x^2} + \frac{1}{\left( 8 - x \right)^2}\]

\[\text { For a local minima or a local maxima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \frac{- 1}{x^2} + \frac{1}{\left( 8 - x \right)^2} = 0\]

\[ \Rightarrow \frac{- \left( 8 - x \right)^2 + x^2}{\left( x \right)^2 \left( 8 - x \right)^2} = 0\]

\[ \Rightarrow - 64 - x^2 + 16x + x^2 = 0\]

\[ \Rightarrow 16x - 64 = 0\]

\[ \Rightarrow x = 4\]

\[f''\left( x \right) = \frac{2}{x^3} - \frac{2}{\left( 8 - x \right)^3}\]

\[ \Rightarrow f''\left( 4 \right) = \frac{2}{4^3} - \frac{2}{\left( 8 - 4 \right)^3}\]

\[ \Rightarrow f''\left( 4 \right) = \frac{2}{64} - \frac{2}{64} = 0\]

\[ \therefore \text { Minimum value }= \frac{1}{4} + \frac{1}{4} = \frac{1}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.7 | Q 9 | पृष्ठ ८१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = | sin 4x+3 | on R ?


f(x) = x\[-\] 1 on R .


f(x) = x3  (x \[-\] 1).


f(x) = \[\frac{1}{x^2 + 2}\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = x3\[-\] 6x2 + 9x + 15

 


`f(x) = 2/x - 2/x^2,  x>0`


f(x) = xex.


`f(x) = x/2+2/x, x>0 `.


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


`f(x)=xsqrt(1-x),  x<=1` .


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Find the maximum and minimum values of y = tan \[x - 2x\] .


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the point where f(x) = x log, x attains minimum value.


Write the maximum value of f(x) = x1/x.


The maximum value of x1/x, x > 0 is __________ .


For the function f(x) = \[x + \frac{1}{x}\]


The number which exceeds its square by the greatest possible quantity is _________________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×