मराठी

The Sum of Two Non-zero Numbers is 8, the Minimum Value of the Sum of the Reciprocals is (A) 1 4 (B) 1 2 (C) 1 8 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .

पर्याय

  • \[\frac{1}{4}\]

  • \[\frac{1}{2}\]

  • \[\frac{1}{8}\]

  • none of these

MCQ

उत्तर

\[\frac{1}{2}\]

 

\[\text { Let the two non - zero numbers be x and y . Then,} \]

\[x + y = 8\]

\[ \Rightarrow y = 8 - x ............\left( 1 \right)\]

\[\text { Now,} \]

\[f\left( x \right) = \frac{1}{x} + \frac{1}{y}\]

\[ \Rightarrow f\left( x \right) = \frac{1}{x} + \frac{1}{8 - x} ..................\left[ \text { From eq. } \left( 1 \right) \right]\]

\[ \Rightarrow f'\left( x \right) = \frac{- 1}{x^2} + \frac{1}{\left( 8 - x \right)^2}\]

\[\text { For a local minima or a local maxima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \frac{- 1}{x^2} + \frac{1}{\left( 8 - x \right)^2} = 0\]

\[ \Rightarrow \frac{- \left( 8 - x \right)^2 + x^2}{\left( x \right)^2 \left( 8 - x \right)^2} = 0\]

\[ \Rightarrow - 64 - x^2 + 16x + x^2 = 0\]

\[ \Rightarrow 16x - 64 = 0\]

\[ \Rightarrow x = 4\]

\[f''\left( x \right) = \frac{2}{x^3} - \frac{2}{\left( 8 - x \right)^3}\]

\[ \Rightarrow f''\left( 4 \right) = \frac{2}{4^3} - \frac{2}{\left( 8 - 4 \right)^3}\]

\[ \Rightarrow f''\left( 4 \right) = \frac{2}{64} - \frac{2}{64} = 0\]

\[ \therefore \text { Minimum value }= \frac{1}{4} + \frac{1}{4} = \frac{1}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.7 | Q 9 | पृष्ठ ८१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = 4x2 + 4 on R .


f(x)=| x+2 | on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x\[-\] 3x .


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = x4 \[-\] 62x2 + 120x + 9.


`f(x) = 2/x - 2/x^2,  x>0`


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Find the maximum and minimum values of y = tan \[x - 2x\] .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = x1/x.


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


For the function f(x) = \[x + \frac{1}{x}\]


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


If x+y=8, then the maximum value of xy is ____________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×