मराठी

Find the Maximum and Minimum Values of Y = Tan X − 2 X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the maximum and minimum values of y = tan \[x - 2x\] .

बेरीज

उत्तर

\[\text { Given }: f\left( x \right) = y = \tan x - 2x\]

\[ \Rightarrow f'\left( x \right) = \sec^2 x - 2\]

\[\text { For a local maxima or local minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow \sec^2 x - 2 = 0\]

\[ \Rightarrow \sec^2 x = 2\]

\[ \Rightarrow \sec x = \pm \sqrt{2}\]

\[ \Rightarrow x = \frac{\pi}{4} \text { and } \frac{3\pi}{4}\]

\[\text { Thus, x }= \frac{\pi}{4} \text { and }x = \frac{3\pi}{4}\text {  are the possible points of local maxima or a local minima } . \]

\[\text { Now,} \]

\[f''\left( x \right) = 2 \sec^2 x \tan x\]

\[\text { At }x = \frac{\pi}{4}: \]

\[ f''\left( \frac{\pi}{4} \right) = 2 \sec^2 \left( \frac{\pi}{4} \right) \tan \left( \frac{\pi}{4} \right) = 4 > 0\]

\[\text { So, }x = \frac{\pi}{4} \text { is a point of local minimum } . \]

\[\text { The local minimum value is given by }\]

\[f\left( \frac{\pi}{4} \right) = \tan\left( \frac{\pi}{4} \right) - 2 \times \frac{\pi}{4} = 1 - \frac{\pi}{2}\]

\[\text { At x} = \frac{3\pi}{4}: \]

\[ f''\left( \frac{3\pi}{4} \right) = 2 \sec^2 \left( \frac{3\pi}{4} \right) \tan \left( \frac{3\pi}{4} \right) = - 4 < 0\]

\[\text{ So,} x = \frac{3\pi}{4}\text {  is a point of local maximum }. \]

\[\text { The local maximum value is given by }\]

\[f\left( \frac{3\pi}{4} \right) = \tan \left( \frac{3\pi}{4} \right) - 2 \times \frac{3\pi}{4} = - 1 - \frac{3\pi}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.3 | Q 6 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = - (x-1)2+2 on R ?


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = x\[-\] 1 on R .


f(x) = x\[-\] 3x .


f(x) = x3  (x \[-\] 1).


f(x) = sin 2x, 0 < x < \[\pi\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


`f(x) = x/2+2/x, x>0 `.


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write sufficient conditions for a point x = c to be a point of local maximum.


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


The maximum value of x1/x, x > 0 is __________ .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×