मराठी

Two Sides of a Triangle Have Lengths 'A' and 'B' and the Angle Between Them is θ What Value of θ Will Maximize the Area of the Triangle? Find the Maximum Area of the Triangle Also. - Mathematics

Advertisements
Advertisements

प्रश्न

Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  

बेरीज

उत्तर

\[\text { As, the area of the triangle, A } = \frac{1}{2}ab\sin\theta\]

\[ \Rightarrow A\left( \theta \right) = \frac{1}{2}ab\sin\theta\]

\[ \Rightarrow A'\left( \theta \right) = \frac{1}{2}\text { ab }\cos\theta\]

\[\text { For maxima or minima, A}'\left( \theta \right) = 0\]

\[ \Rightarrow \frac{1}{2}ab\cos\theta = 0\]

\[ \Rightarrow \cos\theta = 0\]

\[ \Rightarrow \theta = \frac{\pi}{2}\]

\[\text { Also, A }''\left( \theta \right) = - \frac{1}{2}ab\sin\theta\]

\[\text { or,} A''\left( \frac{\pi}{2} \right) = - \frac{1}{2}ab\sin\frac{\pi}{2} = - \frac{1}{2}ab < 0\]

\[\text { i . e } . \theta = \frac{\pi}{2} \text { is point of maxima }\]

\[\text { Now }, \]

\[\text { The maximum area of the triangle } = \frac{1}{2}ab\sin\frac{\pi}{2} = \frac{ab}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.5 | Q 11 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = 4x2 + 4 on R .


f(x)=sin 2x+5 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x3  (x \[-\] 1).


f(x) =  (x \[-\] 1) (x+2)2


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) = (x - 1) (x + 2)2.


`f(x) = 2/x - 2/x^2,  x>0`


`f(x) = x/2+2/x, x>0 `.


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Find the maximum and minimum values of y = tan \[x - 2x\] .


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write sufficient conditions for a point x = c to be a point of local maximum.


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


For the function f(x) = \[x + \frac{1}{x}\]


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The minimum value of x loge x is equal to ____________ .


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×