मराठी

For the Function F(X) = X + 1 X (A) X = 1 is a Point of Maximum (B) X = − 1 is a Point of Minimum (C) Maximum Value > Minimum Value (D) Maximum Value< Minimum Value - Mathematics

Advertisements
Advertisements

प्रश्न

For the function f(x) = \[x + \frac{1}{x}\]

पर्याय

  • x = 1 is a point of maximum

  • x = \[-\] 1 is a point of minimum

  • maximum value > minimum value

  • maximum value < minimum value

MCQ

उत्तर

\[\text { maximum value < minimum value}\]

 

\[\text { Given:} f\left( x \right) = x + \frac{1}{x}\]

\[ \Rightarrow f'\left( x \right) = 1 - \frac{1}{x^2}\]

\[\text { For a local maxima or a local minima, we must have} \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 1 - \frac{1}{x^2} = 0\]

\[ \Rightarrow x^2 - 1 = 0\]

\[ \Rightarrow x^2 = 1\]

\[ \Rightarrow x = \pm 1\]

\[\text { Now }, \]

\[f''\left( x \right) = \frac{2}{x^3}\]

\[ \Rightarrow f''\left( 1 \right) = \frac{2}{1} = 2 > 0\]

\[\text { So, x = 1 is a local minima.}\]

\[\text { Also }, \]

\[f''\left( - 1 \right) = - 2 < 0\]

\[\text {So, x = - 1 is a localmaxima }.\]

\[\text { The local minimum value is given by }\]

\[f\left( 1 \right) = 2\]

\[\text { The local maximum value is given by }\]

\[f\left( - 1 \right) = - 2\]

\[ \therefore \text { Maximum value < Minimum value }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.7 | Q 4 | पृष्ठ ८१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x)=sin 2x+5 on R .


f(x) = x\[-\] 1 on R .


f(x) = \[\frac{1}{x^2 + 2}\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = xex.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


The number which exceeds its square by the greatest possible quantity is _________________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


If x+y=8, then the maximum value of xy is ____________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×