मराठी

Let F(X) = X3+3x2 − 9x+2. Then, F(X) Has (A) a Maximum at X = 1 (B) a Minimum at X = 1 (C) Neither a Maximum Nor a Minimum at X = − 3 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .

पर्याय

  • a maximum at x = 1

  • a minimum at x = 1

  • neither a maximum nor a minimum at x = - 3

  • none of these

MCQ

उत्तर

\[\text { a minimum at x = 1}\]

 

\[\text { Given }: f\left( x \right) = x^3 + 3 x^2 - 9x + 2\]

\[ \Rightarrow f'\left( x \right) = 3 x^2 + 6x - 9\]

\[\text { For a local maxima or a local minima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 3 x^2 + 6x - 9 = 0\]

\[ \Rightarrow x^2 + 2x - 3 = 0\]

\[ \Rightarrow \left( x + 3 \right)\left( x - 1 \right) = 0\]

\[ \Rightarrow x = - 3, 1\]

\[\text { Now,} \]

\[f''\left( x \right) = 6x + 6\]

\[ \Rightarrow f''\left( 1 \right) = 6 + 6 = 12 > 0\]

\[\text { So, x = 1 is a local minima } . \]

\[\text { Also }, \]

\[f''\left( - 3 \right) = - 18 + 6 = - 12 < 0\]

\[\text { So, x = - 3 is a local maxima } . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.7 | Q 5 | पृष्ठ ८१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x)=2x3 +5 on R .


f(x) = x\[-\] 3x .


f(x) = \[\frac{1}{x^2 + 2}\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Write the point where f(x) = x log, x attains minimum value.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the minimum value of f(x) = xx .


The maximum value of x1/x, x > 0 is __________ .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


For the function f(x) = \[x + \frac{1}{x}\]


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


If x+y=8, then the maximum value of xy is ____________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×