Advertisements
Advertisements
प्रश्न
f(x) = \[\frac{1}{x^2 + 2}\] .
उत्तर
\[\text { Given }: \hspace{0.167em} f\left( x \right) = \frac{1}{x^2 + 2}\]
\[ \Rightarrow f'\left( x \right) = \frac{- 2x}{\left( x^2 + 2 \right)^2}\]
\[\text { For the local maxima or minima, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow \frac{- 2x}{\left( x^2 + 2 \right)^2} = 0\]
\[ \Rightarrow x = 0\]
Now, for values close to x = 0 and to the left of 0,
APPEARS IN
संबंधित प्रश्न
f(x) = - (x-1)2+2 on R ?
f(x) = | sin 4x+3 | on R ?
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
f(x) = x4 \[-\] 62x2 + 120x + 9.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
`f(x)=xsqrt(1-x), x<=1` .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
Find the maximum and minimum values of y = tan \[x - 2x\] .
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
For the function f(x) = \[x + \frac{1}{x}\]
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.