Advertisements
Advertisements
प्रश्न
f(x) = - (x-1)2+2 on R ?
उत्तर
Given: f(x) = − (x − 1)2 + 2
Now,
(x − 1)2 \[\geq\] 0 for all x \[\in\] R
\[\Rightarrow\] f(x) = − (x − 1)2 + 2 \[\leq\] 2 for all x \[\in\] R
The maximum value of f(x) is attained when (x − 1) = 0.
(x − 1) = 0
⇒ x = 1
Therefore, the maximum value of f (x) = 2
Since f(x) can be reduced, the minimum value does not exist, which is evident in the graph also.
Hence, function f does not have a minimum value.
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x)=| x+2 | on R .
f(x)=2x3 +5 on R .
f(x) = x3 (x \[-\] 1)2 .
f(x) = (x \[-\] 1) (x+2)2.
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
`f(x) = 2/x - 2/x^2, x>0`
`f(x) = x/2+2/x, x>0 `.
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Find the maximum and minimum values of y = tan \[x - 2x\] .
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
If x+y=8, then the maximum value of xy is ____________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?