मराठी

A Large Window Has the Shape of a Rectangle Surmounted by an Equilateral Triangle. If the Perimeter of the Window is 12 Metres Find the Dimensions of the Rectangle Will - Mathematics

Advertisements
Advertisements

प्रश्न

A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.

बेरीज

उत्तर

\[\text { Let the dimensions of the rectangle be x and y } . \]

\[\text { Perimeter of the window = x + y + x + x + y = 12 }\]

\[ \Rightarrow 3x + 2y = 12\]

\[ \Rightarrow y = \frac{12 - 3x}{2} ...........\left( 1 \right)\]

\[\text { Area of the window } =xy+\frac{\sqrt{3}}{4} x^2 \]

\[ \Rightarrow A = x\left( \frac{12 - 3x}{2} \right) + \frac{\sqrt{3}}{4} x^2 \]

\[ \Rightarrow A = 6x - \frac{3 x^2}{2} + \frac{\sqrt{3}}{4} x^2 \]

\[ \Rightarrow \frac{dA}{dx} = 6 - \frac{6x}{2} + \frac{2\sqrt{3}}{4}x\]

\[ \Rightarrow \frac{dA}{dx} = 6 - 3x + \frac{\sqrt{3}}{2}x\]

\[ \Rightarrow \frac{dA}{dx} = 6 - x\left( 3 - \frac{\sqrt{3}}{2} \right)\]

\[\text { For maximum or a minimum values of A, we must have }\]

\[\frac{dA}{dx} = 0\]

\[ \Rightarrow 6 = x\left( 3 - \frac{\sqrt{3}}{2} \right)\]

\[ \Rightarrow x = \frac{12}{6 - \sqrt{3}}\]

\[\text { Substituting the value of x in eq. } \left( 1 \right), \text { we get }\]

\[y = \frac{12 - 3\left( \frac{12}{6 - \sqrt{3}} \right)}{2}\]

\[ \Rightarrow y = \frac{18 - 6\sqrt{3}}{6 - \sqrt{3}}\]

\[\text { Now, }\]

\[\frac{d^2 A}{d x^2} = - 3 + \frac{\sqrt{3}}{2} < 0\]

\[\text { Thus, the area is maximum when  }x=\frac{12}{6 - \sqrt{3}}\text { and }y=\frac{18 - 6\sqrt{3}}{6 - \sqrt{3}}.\]

shaalaa.com

Notes

The solution given in the book is incorrect. The solution here is created according to the question given in the book.

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.5 | Q 16 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = - (x-1)2+2 on R ?


f(x)=| x+2 | on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) =  (x \[-\] 1) (x+2)2


f(x) =  cos x, 0 < x < \[\pi\] .


f(x) = xex.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Find the maximum and minimum values of y = tan \[x - 2x\] .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


Write necessary condition for a point x = c to be an extreme point of the function f(x).


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The minimum value of x loge x is equal to ____________ .


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×