मराठी

A Straight Line is Drawn Through a Given Point P(1,4). Determine the Least Value of the Sum of the Intercepts on the Coordinate Axes ? - Mathematics

Advertisements
Advertisements

प्रश्न

A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?

बेरीज

उत्तर

\[\text { The equation of line passing through }\left( 1, 4 \right) \text { with slope m is given by } \]

\[y - 4 = m\left( x - 1 \right) ................. \left( 1 \right)\]

\[\text { Substituting y = 0, we get }\]

\[0 - 4 = m\left( x - 1 \right)\]

\[ \Rightarrow \frac{- 4}{m} = x - 1\]

\[ \Rightarrow x = \frac{m - 4}{m}\]

\[\text{ Substituting x = 0, we get } \]

\[y - 4 = m\left( 0 - 1 \right)\]

\[ \Rightarrow y = - m + 4\]

\[ \Rightarrow x = - \left( m - 4 \right)\]

\[\text { So, the intercepts on coordinate axes are } \frac{m - 4}{m} \text { and }- \left( m - 4 \right) . \]

\[\text { Let S be the sum of the intercepts . Then }, \]

\[S = \frac{m - 4}{m} - \left( m - 4 \right)\]

\[ \Rightarrow \frac{dS}{dm} = \frac{4}{m^2} - 1\]

\[\text { For maximum or minimum values of S, we must have }\]

\[ \frac{dS}{dm} = 0\]

\[ \Rightarrow \frac{4}{m^2} - 1 = 0\]

\[ \Rightarrow \frac{4}{m^2} = 1\]

\[ \Rightarrow m^2 = 4\]

\[ \Rightarrow m = \pm 2\]

\[\text {Now}, \]

\[\frac{d^2 S}{d m^2} = \frac{- 8}{m^3}\]

\[ \left( \frac{d^2 S}{d m^2} \right)_{m = 2} = \frac{- 8}{2^3} = - 1 < 0\]

\[\text { So, the sum is minimum at m = 2} . \]

\[ \left( \frac{d^2 S}{d m^2} \right)_{m = - 2} = \frac{- 8}{\left( - 2 \right)^3} = 1 > 0\]

\[S\text { o, the sum is maximum at m = - 2 } . \]

\[\text { Thus, the minimum value is given by}\]

\[S = \frac{- 2 - 4}{- 2} - \left( - 2 - 4 \right) = 3 + 6 = 9\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.5 | Q 43 | पृष्ठ ७४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x)=sin 2x+5 on R .


f(x) = x\[-\] 1 on R .


f(x) = x\[-\] 3x .


f(x) =  cos x, 0 < x < \[\pi\] .


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


The maximum value of x1/x, x > 0 is __________ .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The minimum value of x loge x is equal to ____________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×