मराठी

F(X) = Cos X, 0<X< π . - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) =  cos x, 0 < x < \[\pi\] .

बेरीज

उत्तर

\[\text { Given: } \hspace{0.167em} f\left( x \right) = \cos x\]

\[ \Rightarrow f'\left( x \right) = - \sin x\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow - \sin x = 0\]

\[ \Rightarrow \sin x = 0\]

\[ \Rightarrow x = 0 \ or \ \pi\]

Since \[0 < x < \pi\]  none is in the interval \[\left( 0, \pi \right)\] . 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.2 | Q 9 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = - (x-1)2+2 on R ?


f(x)=| x+2 | on R .


f(x) = | sin 4x+3 | on R ?


f(x)=2x3 +5 on R .


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) = xex.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


`f(x)=xsqrt(1-x),  x<=1` .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write sufficient conditions for a point x = c to be a point of local maximum.


Write the maximum value of f(x) = x1/x.


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×