मराठी

F ( X ) = X √ 1 − X , X ≤ 1 - Mathematics

Advertisements
Advertisements

प्रश्न

`f(x)=xsqrt(1-x),  x<=1` .

बेरीज

उत्तर

\[\text { Given }: f\left( x \right) = x\sqrt{1 - x}\]

\[ \Rightarrow f'\left( x \right) = \sqrt{1 - x} - \frac{x}{2\sqrt{1 - x}}\]

\[\text { For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow \sqrt{1 - x} - \frac{x}{2\sqrt{1 - x}} = 0\]

\[ \Rightarrow \sqrt{1 - x} = \frac{x}{2\sqrt{1 - x}}\]

\[ \Rightarrow 2 - 2x = x\]

\[ \Rightarrow 3x = 2\]

\[ \Rightarrow x = \frac{2}{3} \]

\[\text { Thus, x } = \frac{2}{3} \text { is the possible point of local maxima or local minima }. \]

\[\text { Now }, \]

\[ f''\left( x \right) = \frac{- 1}{\sqrt{1 - x}} - \frac{1}{2}\left( \frac{\sqrt{1 - x} + \frac{x}{2\sqrt{1 - x}}}{\left( 1 - x \right)} \right) = \frac{- 1}{\sqrt{1 - x}} - \frac{1}{2}\left[ \frac{2 - x}{\left( 1 - x \right)\sqrt{1 - x}} \right]\]

\[\text { At  }x = \frac{2}{3}: \]

\[ f''\left( \frac{2}{3} \right) = \frac{- 1}{\sqrt{1 - \frac{2}{3}}} - \frac{1}{2}\left[ \frac{2 - \frac{2}{3}}{\left( 1 - \frac{2}{3} \right)\sqrt{1 - \frac{2}{3}}} \right] = - \sqrt{3} - \frac{\frac{4}{3}}{\frac{1}{3 \times \sqrt{3}}} = - \sqrt{3} - 4\sqrt{3} < 0\]

\[\text { So,} x = \frac{2}{3}\text {  is the point of local maximum }. \]

\[\text { The local maximum value is given by }\]

\[f\left( \frac{2}{3} \right) = \frac{2}{3}\sqrt{1 - \frac{2}{3}} = \frac{2}{3\sqrt{3}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.3 | Q 2.2 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x)=2x3 +5 on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = \[\frac{1}{x^2 + 2}\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = (x - 1) (x + 2)2.


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Find the maximum and minimum values of y = tan \[x - 2x\] .


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×