Advertisements
Advertisements
प्रश्न
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
पर्याय
\[\frac{4}{3}\]
\[\frac{2}{3}\]
1
\[\frac{3}{4}\]
उत्तर
\[\frac{4}{3}\]
\[\text { Maximum value of }\frac{1}{4 x^2 + 2x + 1}= \text { Minimum value of }4 x^2 + 2x + 1 \]
\[\text{ Now, }\]
\[f\left( x \right) = 4 x^2 + 2x + 1\]
\[ \Rightarrow f'\left( x \right) = 8x + 2\]
\[\text { For a local maxima or a local minima, we must have } \]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 8x + 2 = 0\]
\[ \Rightarrow 8x = - 2\]
\[ \Rightarrow x = \frac{- 1}{4}\]
\[\text { Now, } \]
\[f''\left( x \right) = 8\]
\[ \Rightarrow f''\left( 1 \right) = 8 > 0\]
\[\text { So, x } = \frac{- 1}{4} \text { is a local minima } . \]
\[\text { Thus },\frac{1}{4 x^2 + 2x + 1}\text { is maximum at x } = \frac{- 1}{4} . \]
\[ \Rightarrow \text { Maximum value of } \frac{1}{4 x^2 + 2x + 1} = \frac{1}{4 \left( \frac{- 1}{4} \right)^2 + 2\left( \frac{- 1}{4} \right) + 1}\]
\[ = \frac{1}{\frac{4}{16} - \frac{1}{2} + 1} = \frac{16}{12} = \frac{4}{3}\]
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x) = - (x-1)2+2 on R ?
f(x)=| x+2 | on R .
f(x) = (x \[-\] 1) (x+2)2.
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
f(x) = cos x, 0 < x < \[\pi\] .
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the maximum value of f(x) = x1/x.
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
The minimum value of x loge x is equal to ____________ .
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.