मराठी

F(X) = Sin + √ 3 Cos X is Maximum When X = (A) π 3 (B) π 4 (C) π 6 (D) 0 - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .

पर्याय

  • \[\frac{\pi}{3}\]

  • \[\frac{\pi}{4}\]

  • \[\frac{\pi}{6}\]

  • 0

MCQ

उत्तर

\[\frac{\pi}{6}\]

 

\[\text { Given }: f\left( x \right) = \sin x + \sqrt{3} \cos x\]

\[ \Rightarrow f'\left( x \right) = \cos x - \sqrt{3} \sin x\]

\[\text { For a local maxima or a local minima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \cos x - \sqrt{3} \sin x = 0\]

\[ \Rightarrow \cos x = \sqrt{3} \sin x\]

\[ \Rightarrow \tan x = \frac{1}{\sqrt{3}}\]

\[ \Rightarrow x = \frac{\pi}{6}\]

\[\text { Now,} \]

\[f''\left( x \right) = - \sin x - \sqrt{3} \cos x\]

\[ \Rightarrow \Rightarrow f''\left( \frac{\pi}{2} \right) = - \sin\frac{\pi}{2} - \sqrt{3} \cos\frac{\pi}{2}\frac{- 1}{2} - \frac{3}{2} = - 2 < 0\]

\[\text { So,} x = \frac{\pi}{2}\text {  is a local maxima }. \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.7 | Q 18 | पृष्ठ ८२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f (x) = \[-\] | x + 1 | + 3 on R .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


`f(x) = 2/x - 2/x^2,  x>0`


f(x) = xex.


`f(x) = x/2+2/x, x>0 `.


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


`f(x)=xsqrt(1-x),  x<=1` .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Write the maximum value of f(x) = x1/x.


The maximum value of x1/x, x > 0 is __________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×