Advertisements
Advertisements
प्रश्न
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
उत्तर
\[\text { Suppose the wire, which is to be made into a square and a circle, is cut into two pieces of length x m and y m, respectively . Then, } \]
\[x + y = 28 . . . \left( 1 \right)\]
\[\text { Perimeter of square }, 4\left( side \right) = x\]
\[ \Rightarrow \text { Side } = \frac{x}{4}\]
\[ \Rightarrow \text { Area of square } = \left( \frac{x}{4} \right)^2 = \frac{x^2}{16}\]
\[\text { Circumference of circle }, 2\pi r = y\]
\[ \Rightarrow r = \frac{y}{2\pi}\]
\[\text { Area of circle =} \pi r^2 = \pi \left( \frac{y}{2\pi} \right)^2 = \frac{y^2}{4\pi}\]
\[\text { Now, }\]
\[z = \text { Area of square + Area of circle }\]
\[ \Rightarrow z = \frac{x^2}{16} + \frac{y^2}{4\pi}\]
\[ \Rightarrow z = \frac{x^2}{16} + \frac{\left( 28 - x \right)^2}{4\pi}\]
\[ \Rightarrow \frac{dz}{dx} = \frac{2x}{16} - \frac{2\left( 28 - x \right)}{4\pi}\]
\[\text { For maximum or minimum values of z, we must have }\]
\[\frac{dz}{dx} = 0\]
\[ \Rightarrow \frac{2x}{16} - \frac{2\left( 28 - x \right)}{4\pi} = 0 .............\left[ \text { From eq }. \left( 1 \right) \right]\]
\[ \Rightarrow \frac{x}{4} = \frac{\left( 28 - x \right)}{\pi}\]
\[ \Rightarrow \frac{x\pi}{4} + x = 28\]
\[ \Rightarrow x\left( \frac{\pi}{4} + 1 \right) = 28\]
\[ \Rightarrow x = \frac{28}{\left( \frac{\pi}{4} + 1 \right)}\]
\[ \Rightarrow x = \frac{112}{\pi + 4}\]
\[ \Rightarrow y = 28 - \frac{112}{\pi + 4} ............\left[ \text { From eq } . \left( 1 \right) \right]\]
\[ \Rightarrow y = \frac{28\pi}{\pi + 4}\]
\[ \frac{d^2 z}{d x^2} = \frac{1}{8} + \frac{1}{2\pi} > 0\]
\[\text { Thus, z is minimum when x } = \frac{112}{\pi + 4} \text { and }y = \frac{28\pi}{\pi + 4} . \]
\[\text { Hence, the length of the two pieces of wire are } \frac{112}{\pi + 4} m \text { and } \frac{28\pi}{\pi + 4} \text { m respectively }.\]
APPEARS IN
संबंधित प्रश्न
f(x)=2x3 +5 on R .
f(x) = x3 \[-\] 3x .
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) = cos x, 0 < x < \[\pi\] .
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
`f(x) = 2/x - 2/x^2, x>0`
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write sufficient conditions for a point x = c to be a point of local maximum.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
For the function f(x) = \[x + \frac{1}{x}\]
The number which exceeds its square by the greatest possible quantity is _________________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .