मराठी

F(X) = (X − 1)2 + 3 in [ − 3,1] ? - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?

बेरीज

उत्तर

\[\text { Given }: \hspace{0.167em} f\left( x \right) = \left( x - 1 \right)^2 + 3\]

\[ \Rightarrow f'\left( x \right) = 2\left( x - 1 \right)\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow 2\left( x - 1 \right) = 0\]

\[ \Rightarrow x = 1\]

\[\text { Thus, the critical points of f are - 3 and }1 . \]

\[\text { Now, }\]

\[f\left( - 3 \right) = \left( - 3 - 1 \right)^2 + 3 = 16 + 3 = 19\]

\[f\left( 1 \right) = \left( 1 - 1 \right)^2 + 3 = 3\]

\[\text { Hence, the absolute maximum value when x = - 3 is 19 and the absolute minimum value when x = 1 is }3 . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.4 | Q 1.2 | पृष्ठ ३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x\[-\] 1 on R .


f(x) =  (x \[-\] 1) (x+2)2


f(x) = sin 2x, 0 < x < \[\pi\] .


`f(x) = 2/x - 2/x^2,  x>0`


f(x) = xex.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write sufficient conditions for a point x = c to be a point of local maximum.


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×