मराठी

The Total Cost of Producing X Radio Sets per Day is Rs ( X 2 4 + 35 X + 25 ) and the Price per Set at Which They May Be Sold is Rs. ( 50 − X 2 ) . Ind the - Mathematics

Advertisements
Advertisements

प्रश्न

The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.

बेरीज

उत्तर

\[\text { Profit =S.P. - C.P}.\]

\[ \Rightarrow P = x\left( 50 - \frac{x}{2} \right) - \left( \frac{x^2}{4} + 35x + 25 \right)\]

\[ \Rightarrow P = 50x - \frac{x^2}{2} - \frac{x^2}{4} - 35x - 25\]

\[ \Rightarrow \frac{dP}{dx} = 50 - x - \frac{x}{2} - 35\]

\[\text { For maximum or minimum values of P, we must have }\]

\[\frac{dP}{dx} = 0\]

\[ \Rightarrow 15 - \frac{3x}{2} = 0\]

\[ \Rightarrow 15 = \frac{3x}{2}\]

\[ \Rightarrow x = \frac{30}{3}\]

\[ \Rightarrow x = 10\]

\[\text { Now,} \]

\[\frac{d^2 P}{d x^2} = \frac{- 3}{2} < 0\]

\[\text{ So, profit is maximum if daily output is 10 items.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.5 | Q 36 | पृष्ठ ७४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of y = tan \[x - 2x\] .


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


Write necessary condition for a point x = c to be an extreme point of the function f(x).


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the point where f(x) = x log, x attains minimum value.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the maximum value of f(x) = x1/x.


For the function f(x) = \[x + \frac{1}{x}\]


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The minimum value of x loge x is equal to ____________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×