Advertisements
Advertisements
प्रश्न
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
उत्तर
\[\text { Let the breadth, height and strength of the beam be b, h and S, respectively }. \]
\[ a^2 = \frac{h^2 + b^2}{4}\]
\[ \Rightarrow 4 a^2 - b^2 = h^2 .............. \left( 1 \right)\]
\[\text { Here }, \]
\[\text { Strength of beam,} S = Kb h^2 ............\left[ \text { Where K is some constant } \right]\]
\[ \Rightarrow S = kb\left( 4 R^2 - b^2 \right) .................\left[ \text { From eq. }\left( 1 \right) \right]\]
\[ \Rightarrow S = k\left( b4 a^2 - b^3 \right)\]
\[ \Rightarrow \frac{dS}{db} = k\left( 4 a^2 - 3 b^2 \right)\]
\[\text { For maximum or minimum values of S, we must have }\]
\[\frac{dS}{db} = 0\]
\[ \Rightarrow k\left( 4 a^2 - 3 b^2 \right) = 0\]
\[ \Rightarrow 4 a^2 - 3 b^2 = 0\]
\[ \Rightarrow 4 a^2 = 3 b^2 \]
\[ \Rightarrow b = \frac{2a}{\sqrt{3}}\]
\[\text { Substituting the value of b in eq }. \left( 1 \right),\text { we get }\]
\[ \Rightarrow 4 a^2 - \left( \frac{2a}{\sqrt{3}} \right)^2 = h^2 \]
\[ \Rightarrow \frac{12 a^2 - 4 a^2}{3} = h^2 \]
\[ \Rightarrow h = \frac{2\sqrt{2}}{\sqrt{3}}a\]
\[\text { Now, }\]
\[\frac{d^2 S}{d b^2} = - 6Kb\]
\[ \Rightarrow \frac{d^2 S}{d b^2} = - 6K\frac{2a}{\sqrt{3}}\]
\[ \Rightarrow \frac{d^2 S}{d b^2} = \frac{- 12Ka}{\sqrt{3}} < 0\]
\[\text { So, the strength of beam is maximum when b =} \frac{2a}{\sqrt{3}} \text { and h } = \frac{2\sqrt{2}}{\sqrt{3}}a . \]
APPEARS IN
संबंधित प्रश्न
f(x)=sin 2x+5 on R .
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = x3 \[-\] 3x .
f(x) = (x \[-\] 1) (x+2)2.
f(x) = sin 2x, 0 < x < \[\pi\] .
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
`f(x)=xsqrt(1-x), x<=1` .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
Write sufficient conditions for a point x = c to be a point of local maximum.
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the minimum value of f(x) = xx .
Write the maximum value of f(x) = x1/x.
The maximum value of x1/x, x > 0 is __________ .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
The minimum value of x loge x is equal to ____________ .
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .