Advertisements
Advertisements
प्रश्न
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
उत्तर
\[\text { Given }: f\left( x \right) = \cos^2 x + \sin x\]
\[ \Rightarrow f'\left( x \right) = 2 \cos x\left( - \sin x \right) + \cos x = - 2 \sin x \cos x + \cos x\]
\[\text { For a local maximum or a local minimum, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow - 2 \sin x \cos x + \cos x = 0\]
\[ \Rightarrow \cos x \left( 2 \sin x - 1 \right) = 0\]
\[ \Rightarrow \sin x = \frac{1}{2} or \cos x = 0\]
\[ \Rightarrow x = \frac{\pi}{6} or \frac{\pi}{2} \left[ \because x \in \left( 0, \pi \right) \right]\]
\[\text { Thus, the critical points of f are } 0, \frac{\pi}{6}, \frac{\pi}{2} \text { and } \pi . \]
\[\text { Now }, \]
\[f\left( 0 \right) = \cos^2 \left( 0 \right) + \sin \left( 0 \right) = 1\]
\[f\left( \frac{\pi}{6} \right) = \cos^2 \left( \frac{\pi}{6} \right) + \sin \left( \frac{\pi}{6} \right) = \frac{5}{4}\]
\[f\left( \frac{\pi}{2} \right) = \cos^2 \left( \frac{\pi}{2} \right) + \sin \left( \frac{\pi}{2} \right) = 1\]
\[f\left( \pi \right) = \cos^2 \left( \pi \right) + \sin \left( \pi \right) = 1\]
\[\text { Hence, the absolute maximum value when } x = \frac{\pi}{6}\text { is } \frac{5}{4} \text { and the absolute minimum value when }x = 0, \frac{\pi}{2}, \pi \text{ is }1 . \]
APPEARS IN
संबंधित प्रश्न
f(x) = - (x-1)2+2 on R ?
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = x3 \[-\] 3x .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
f(x) =\[x\sqrt{1 - x} , x > 0\].
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) = x4 \[-\] 62x2 + 120x + 9.
`f(x) = 2/x - 2/x^2, x>0`
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
Find the maximum and minimum values of y = tan \[x - 2x\] .
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write sufficient conditions for a point x = c to be a point of local maximum.
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
Write the maximum value of f(x) = x1/x.
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
For the function f(x) = \[x + \frac{1}{x}\]
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
If x+y=8, then the maximum value of xy is ____________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .