हिंदी

A Straight Line is Drawn Through a Given Point P(1,4). Determine the Least Value of the Sum of the Intercepts on the Coordinate Axes ? - Mathematics

Advertisements
Advertisements

प्रश्न

A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?

योग

उत्तर

\[\text { The equation of line passing through }\left( 1, 4 \right) \text { with slope m is given by } \]

\[y - 4 = m\left( x - 1 \right) ................. \left( 1 \right)\]

\[\text { Substituting y = 0, we get }\]

\[0 - 4 = m\left( x - 1 \right)\]

\[ \Rightarrow \frac{- 4}{m} = x - 1\]

\[ \Rightarrow x = \frac{m - 4}{m}\]

\[\text{ Substituting x = 0, we get } \]

\[y - 4 = m\left( 0 - 1 \right)\]

\[ \Rightarrow y = - m + 4\]

\[ \Rightarrow x = - \left( m - 4 \right)\]

\[\text { So, the intercepts on coordinate axes are } \frac{m - 4}{m} \text { and }- \left( m - 4 \right) . \]

\[\text { Let S be the sum of the intercepts . Then }, \]

\[S = \frac{m - 4}{m} - \left( m - 4 \right)\]

\[ \Rightarrow \frac{dS}{dm} = \frac{4}{m^2} - 1\]

\[\text { For maximum or minimum values of S, we must have }\]

\[ \frac{dS}{dm} = 0\]

\[ \Rightarrow \frac{4}{m^2} - 1 = 0\]

\[ \Rightarrow \frac{4}{m^2} = 1\]

\[ \Rightarrow m^2 = 4\]

\[ \Rightarrow m = \pm 2\]

\[\text {Now}, \]

\[\frac{d^2 S}{d m^2} = \frac{- 8}{m^3}\]

\[ \left( \frac{d^2 S}{d m^2} \right)_{m = 2} = \frac{- 8}{2^3} = - 1 < 0\]

\[\text { So, the sum is minimum at m = 2} . \]

\[ \left( \frac{d^2 S}{d m^2} \right)_{m = - 2} = \frac{- 8}{\left( - 2 \right)^3} = 1 > 0\]

\[S\text { o, the sum is maximum at m = - 2 } . \]

\[\text { Thus, the minimum value is given by}\]

\[S = \frac{- 2 - 4}{- 2} - \left( - 2 - 4 \right) = 3 + 6 = 9\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.5 | Q 43 | पृष्ठ ७४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = 4x2 + 4 on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = (x \[-\] 5)4.


f(x) = x\[-\] 3x .


f(x) = x3  (x \[-\] 1).


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) = x4 \[-\] 62x2 + 120x + 9.


`f(x) = 2/x - 2/x^2,  x>0`


f(x) = xex.


`f(x)=xsqrt(1-x),  x<=1` .


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Find the maximum and minimum values of y = tan \[x - 2x\] .


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×