हिंदी

F(X) = X3 − 3x . - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = x\[-\] 3x .

योग

उत्तर

\[\text { Given: } \hspace{0.167em} f\left( x \right) = \left( x - 5 \right)^4 \]

\[ \Rightarrow f'\left( x \right) = 4 \left( x - 5 \right)^3 \]

\[\text { For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 4 \left( x - 5 \right)^3 = 0\]

\[ \Rightarrow x = 5\]

Since f '(x) changes from negative to positive as x increases through 1, x = 1 is the point of local minima.
The local minimum value of  f (x) at x = 1 is given by \[\left( 1 \right)^3 - 3\left( 1 \right) = - 2\]

Since f '(x) changes from positive to negative when x increases through -1, x = -1 is the point of local maxima.
The local maximum value of  f (x) at x = -1 is given by \[\left( - 1 \right)^3 - 3\left( - 1 \right) = 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.2 | Q 2 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = | sin 4x+3 | on R ?


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


f(x) =\[x\sqrt{1 - x} , x > 0\].


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the minimum value of f(x) = xx .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×