हिंदी

A Box of Constant Volume C is to Be Twice as Long as It is Wide. the Material on the Top and Four Sides Cost Three Times as Much per Square Metre as that in the Bottom.? - Mathematics

Advertisements
Advertisements

प्रश्न

A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?

योग

उत्तर

\[\text { Let l, b and h be the length, breadth and height of the box, respectively.} \]

\[\text { Volume of the box} = c \]

\[\text { Given: }l = 2b ................\left( 1 \right)\]

\[ \Rightarrow c = lbh\]

\[ \Rightarrow c = 2 b^2 h\]

\[ \Rightarrow h = \frac{c}{2 b^2} . . . \left( 2 \right)\]

\[\text { Let cost of the material required for bottom be K } {/m}^2 .\]

\[\text { Cost of the material required for 4 walls and top } = Rs 3K {/m}^2 \]

\[\text { Total cost, T }= K\left( lb \right) + 3k\left( 2lh + 2bh + lb \right)\]

\[ \Rightarrow T = 2K b^2 + 3K\left( \frac{4bc}{2 b^2} + \frac{2bc}{2 b^2} + 2 b^2 \right) ................\left[ \text { From eqs } . \left( 1 \right) \text { and } \left( 2 \right) \right] \]

\[ \Rightarrow \frac{dT}{db} = 4Kb + 3K\left( \frac{- 3c}{b^2} + 4b \right)\]

\[\text { For maximum or minimum values of T, we must have }\]

\[\frac{dT}{db} = 0\]

\[ \Rightarrow 4kb + 3K\left( \frac{- 3c}{b^2} + 4b \right) = 0\]

\[ \Rightarrow 4b = 3\left( \frac{3c}{b^2} - 4b \right)\]

\[ \Rightarrow 4b = \left( \frac{9c}{b^2} - 12b \right)\]

\[ \Rightarrow 4b = \frac{9c - 12 b^3}{b^2}\]

\[ \Rightarrow 4 b^3 = 9c - 12 b^3 \]

\[ \Rightarrow 16 b^3 = 9c\]

\[ \Rightarrow b = \left( \frac{9c}{16} \right)^\frac{1}{3} \]

\[\text { Now,} \]

\[\frac{d^2 T}{d b^2} = 4K + 3K\left( \frac{6c}{b^3} + 4 \right)\]

\[ \Rightarrow \frac{d^2 T}{d b^2} = 4K + 3K\left( \frac{6c}{9c} \times 16 + 4 \right)\]

\[ \Rightarrow K\left( 4 + 3 \times \frac{44}{3} \right)\]

\[ \Rightarrow 48K > 0\]

\[ \therefore \text { Cost is minimum when b }= \left( \frac{9c}{16} \right)^\frac{1}{3} . \]

\[\text { Substituting b}= \left( \frac{9c}{16} \right)^\frac{1}{3} \text { in eq.}\left( 1 \right)\text { and }eq.\left( 2 \right)\]

\[ \Rightarrow l = 2 \left( \frac{9c}{16} \right)^\frac{1}{3} \]

\[h = \frac{c}{2 b^2}\]

\[ \Rightarrow h = \frac{c}{2 \left( \frac{9c}{16} \right)^\frac{2}{3}}\]

\[ \Rightarrow h = \left( \frac{32c}{81} \right)^\frac{1}{3} \]

\[\text { Thus, the most economic dimensions of the box are }l = 2 \left( \frac{9c}{16} \right)^\frac{1}{3} , b = \left( \frac{9c}{16} \right)^\frac{1}{3} \text { and h } = \left( \frac{32c}{81} \right)^\frac{1}{3} . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.5 | Q 39 | पृष्ठ ७४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = 4x2 + 4 on R .


f(x) = x\[-\] 1 on R .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


`f(x) = x/2+2/x, x>0 `.


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


`f(x)=xsqrt(1-x),  x<=1` .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


Write necessary condition for a point x = c to be an extreme point of the function f(x).


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the maximum value of f(x) = x1/x.


The number which exceeds its square by the greatest possible quantity is _________________ .


If x+y=8, then the maximum value of xy is ____________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×