Advertisements
Advertisements
प्रश्न
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
उत्तर
\[\text {Suppose the wire, which is to be made into a square and a triangle, is cut into two pieces of length x and y, respectively . Then}, \]
\[x + y = 20 .......... \left( 1 \right)\]
\[\text { Perimeter of square }, 4\left( Side \right) = x\]
\[ \Rightarrow \text { Side } = \frac{x}{4}\]
\[\text { Area of square = }\left( \frac{x}{4} \right)^2 = \frac{x^2}{16}\]
\[\text { Perimeter of triangle }, 3\left( \text { Side } \right) = y\]
\[ \Rightarrow \text { Side } = \frac{y}{3}\]
\[\text { Area of triangle } = \frac{\sqrt{3}}{4} \times \left( \text { Side } \right)^2 = \frac{\sqrt{3}}{4} \times \left( \frac{y}{3} \right)^2 = \frac{\sqrt{3} y^2}{36}\]
\[\text { Now,} \]
\[z =\text { Area of square + Area of triangle }\]
\[ \Rightarrow z = \frac{x^2}{16} + \frac{\sqrt{3} y^2}{36}\]
\[ \Rightarrow z = \frac{x^2}{16} + \frac{\sqrt{3} \left( 20 - x \right)^2}{36} .................\left[ \text { From eq } . \left( 1 \right) \right]\]
\[ \Rightarrow \frac{dz}{dx} = \frac{2x}{16} - \frac{2\sqrt{3}\left( 20 - x \right)}{36}\]
\[\text { For maximum or minimum values of z, we must have }\]
\[\frac{dz}{dx} = 0\]
\[ \Rightarrow \frac{2x}{16} - \frac{\sqrt{3}\left( 20 - x \right)}{18} = 0\]
\[ \Rightarrow \frac{9x}{4} = \sqrt{3}\left( 20 - x \right)\]
\[ \Rightarrow \frac{9x}{4} + x\sqrt{3} = 20\sqrt{3}\]
\[ \Rightarrow x\left( \frac{9}{4} + \sqrt{3} \right) = 20\sqrt{3}\]
\[ \Rightarrow x = \frac{20\sqrt{3}}{\left( \frac{9}{4} + \sqrt{3} \right)}\]
\[ \Rightarrow x = \frac{80\sqrt{3}}{\left( 9 + 4\sqrt{3} \right)}\]
\[ \Rightarrow y = 20 - \frac{80\sqrt{3}}{9 + 4\sqrt{3}} .............\left[ \text { From eq }. \left( 1 \right) \right]\]
\[ \Rightarrow y = \frac{180}{9 + 4\sqrt{3}}\]
\[ \frac{d^2 z}{d x^2} = \frac{1}{8} + \frac{\sqrt{3}}{18} > 0\]
\[\text { Thus, z is minimum when } x = \frac{80\sqrt{3}}{\left( 9 + 4\sqrt{3} \right)} \text { and }y = \frac{180}{9 + 4\sqrt{3}} . \]
\[\text { Hence, the wire of length 20 cm should be cut into two pieces of lengths }\frac{80\sqrt{3}}{\left( 9 + 4\sqrt{3} \right)} \text { m and } \frac{180}{9 + 4\sqrt{3}} m . \]
Notes
The solution given in the book is incorrrect . The solution here is created according to the question given in the book.
APPEARS IN
संबंधित प्रश्न
f(x) = - (x-1)2+2 on R ?
f(x) = | sin 4x+3 | on R ?
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) = cos x, 0 < x < \[\pi\] .
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
f(x) = xex.
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Find the maximum and minimum values of y = tan \[x - 2x\] .
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
Write the maximum value of f(x) = x1/x.
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
Let f(x) = x3+3x2 \[-\] 9x+2. Then, f(x) has _________________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.
Which of the following graph represents the extreme value:-