Advertisements
Advertisements
प्रश्न
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
विकल्प
0
maximum
minimum
none of these
उत्तर
none of these
\[\text { Given }: f\left( x \right) = 2 \sin 3x + 3 \cos 3x\]
\[ \Rightarrow f'\left( x \right) = 6 \cos 3x - 9 \sin 3x\]
\[\text { For a local minima or a local maxima, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 6 \cos 3x - 9 \sin 3x = 0\]
\[ \Rightarrow 6 \cos 3x = 9 \sin 3x\]
\[ \Rightarrow \frac{\sin 3x}{\cos 3x} = \frac{2}{3}\]
\[ \Rightarrow \tan 3x = \frac{2}{3} . . . \left( 1 \right)\]
\[\text { At x } = \frac{5\pi}{6}: \]
\[\tan 3x = \tan \frac{5\pi}{2}\]
\[ \Rightarrow \tan 3x = \tan \frac{\pi}{2}\]
\[\text { So,} \tan 3x \text { is not defined }. \left[ \tan 3x \neq \frac{2}{3} \text { is not satisfying eq } . \left( 1 \right) \right]\]
\[\text { Thus, }x = \frac{5\pi}{6}\text { is not a critical point } .\]
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x)=sin 2x+5 on R .
f(x) = (x \[-\] 5)4.
f(x) = x3 \[-\] 3x .
f(x) = x3 (x \[-\] 1)2 .
f(x) = sin 2x, 0 < x < \[\pi\] .
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) = x3\[-\] 6x2 + 9x + 15
f(x) = (x - 1) (x + 2)2.
`f(x) = 2/x - 2/x^2, x>0`
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
The maximum value of x1/x, x > 0 is __________ .
For the function f(x) = \[x + \frac{1}{x}\]
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .