हिंदी

Show that the Height of the Cone of Maximum Volume that Can Be Inscribed in a Sphere of Radius 12 Cm is 16 Cm ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?

योग

उत्तर

\[\text { Let the height, radius of base and volume of the cone be h, r and V, respectively . Then, } \]

\[h = R + \sqrt{R^2 - r^2}\]

\[ \Rightarrow h - R = \sqrt{R^2 - r^2}\]

\[\text { Squaring both the sides, we get}\]

\[ h^2 + R^2 - 2hR = R^2 - r^2 \]

\[ \Rightarrow r^2 = 2hR - h^2 ........ \left( 1 \right)\]

\[\text { Now,} \]

\[V = \frac{1}{3}\pi r^2 h\]

\[ \Rightarrow V = \frac{\pi}{3}\left( 2 h^2 R - h^3 \right) ..............\left[ \text {From eq. } \left( 1 \right) \right]\]

\[ \Rightarrow \frac{dV}{dh} = \frac{\pi}{3}\left( 4hR - 3 h^2 \right)\]

\[\text { For maximum or minimum values of V, we must have }\]

\[\frac{dV}{dh} = 0\]

\[ \Rightarrow \frac{\pi}{3}\left( 4hR - 3 h^2 \right) = 0\]

\[ \Rightarrow 4hR = 3 h^2 \]

\[ \Rightarrow h = \frac{4R}{3}\]

\[\text { Now,} \]

\[\frac{d^2 V}{d h^2} = \frac{\pi}{3}\left( 4R - 6h \right)\]

\[ \Rightarrow \frac{\pi}{3}\left( 4R - 8R \right) = 0\]

\[ \Rightarrow \frac{- 4\pi R}{3} < 0\]

\[\text { So, the volume is maximum when h } = \frac{4R}{3} . \]

\[ \Rightarrow h = \frac{4 \times 12}{3} = 16 cm\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.5 | Q 25 | पृष्ठ ७३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=sin 2x+5 on R .


f(x) = (x \[-\] 5)4.


f(x) = x\[-\] 3x .


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


f(x) =\[x\sqrt{1 - x} , x > 0\].


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


`f(x) = x/2+2/x, x>0 `.


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

Write sufficient conditions for a point x = c to be a point of local maximum.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the minimum value of f(x) = xx .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


For the function f(x) = \[x + \frac{1}{x}\]


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×