Advertisements
Advertisements
Question
f(x) = | sin 4x+3 | on R ?
Solution
Given: f(x) = \[\left| \sin 4x + 3 \right|\]
We know that −1 \[\leq\] sin 4x \[\leq\]1.
⇒ 2 \[\leq\] sin 4x + 3 \[\leq\]4
⇒ 2 \[\leq\] \[\left| \sin 4x + 3 \right|\] \[\leq\] 4
⇒ 2 \[\leq\] f(x) \[\leq\] 4
Hence, the maximum and minimum values of f are 4 and 2, respectively.
APPEARS IN
RELATED QUESTIONS
f(x)=sin 2x+5 on R .
f(x) = x3 \[-\] 1 on R .
f(x) = (x \[-\] 5)4.
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) = cos x, 0 < x < \[\pi\] .
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) =\[x\sqrt{1 - x} , x > 0\].
f(x) = x4 \[-\] 62x2 + 120x + 9.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
Find the maximum and minimum values of y = tan \[x - 2x\] .
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
For the function f(x) = \[x + \frac{1}{x}\]
The number which exceeds its square by the greatest possible quantity is _________________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.