Advertisements
Advertisements
Question
The number which exceeds its square by the greatest possible quantity is _________________ .
Options
\[\frac{1}{2}\]
\[\frac{1}{4}\]
\[\frac{3}{4}\]
none of these
Solution
\[\frac{1}{2}\]
\[\text { Let the required number be x . Then, } \]
\[f\left( x \right) = x - x^2 \]
\[ \Rightarrow f'\left( x \right) = 1 - 2x\]
\[\text { For a local maxima or a local minima, we must have } \]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 1 - 2x = 0\]
\[ \Rightarrow 2x = 1\]
\[ \Rightarrow x = \frac{1}{2}\]
\[\text { Now }, \]
\[f''\left( x \right) = - 2 < 0\]
\[\text { So, } x = \frac{1}{2}\text { is a local maxima }. \]
\[\text { Hence, the required number is } \frac{1}{2} . \]
APPEARS IN
RELATED QUESTIONS
f(x) = x3 \[-\] 1 on R .
f(x) = (x \[-\] 5)4.
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) = x4 \[-\] 62x2 + 120x + 9.
f(x) = x3\[-\] 6x2 + 9x + 15
`f(x) = 2/x - 2/x^2, x>0`
f(x) = xex.
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
`f(x)=xsqrt(1-x), x<=1` .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
For the function f(x) = \[x + \frac{1}{x}\]
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?