Advertisements
Advertisements
प्रश्न
The minimum value of x loge x is equal to ____________ .
विकल्प
e
`1/e`
`-1/e`
`2/e`
`-e`
उत्तर
\[\frac{- 1}{e}\]
\[\text { Here }, \]
\[f\left( x \right) = x \log_e x\]
\[ \Rightarrow f'\left( x \right) = \log_e x + 1\]
\[\text { For a local maxima or a local minima, we must have } \]
\[f'\left( x \right) = 0\]
\[ \Rightarrow \log_e x + 1 = 0\]
\[ \Rightarrow \log_e x = - 1\]
\[ \Rightarrow x = e^{- 1} \]
\[\text { Now,} \]
\[f''\left( x \right) = \frac{1}{x}\]
\[ \Rightarrow f''\left( e^{- 1} \right) = e > 0\]
\[\text { So,} x = e^{- 1}\text { is a local minima }. \]
\[\text { Hence, the minimum value of } f\left( x \right) = f\left( e^{- 1} \right) . \]
\[ \Rightarrow e^{- 1} \log_e \left( e^{- 1} \right) = - e^{- 1} = \frac{- 1}{e}\]
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x) = - (x-1)2+2 on R ?
f(x)=sin 2x+5 on R .
f(x) = | sin 4x+3 | on R ?
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = x3 (x \[-\] 1)2 .
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
f(x) = cos x, 0 < x < \[\pi\] .
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) = x4 \[-\] 62x2 + 120x + 9.
f(x) = x3\[-\] 6x2 + 9x + 15
f(x) = xex.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
For the function f(x) = \[x + \frac{1}{x}\]
The number which exceeds its square by the greatest possible quantity is _________________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
If x+y=8, then the maximum value of xy is ____________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.
Which of the following graph represents the extreme value:-