Advertisements
Advertisements
प्रश्न
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
उत्तर
Let r be the radius of the sphere, x be the side of the cube and S be the sum of the surface area of both. Then, \[S = 4\pi r^2 + 6 x^2\]
\[\Rightarrow\]\[x = \left( \frac{S - 4\pi r^2}{6} \right)^\frac{1}{2}\] ................(1)
Sum of volumes, V= \[\frac{4}{3}\pi r^3 + x^3\]
\[\Rightarrow\] V = \[\frac{4\pi r^3}{3} + \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{3}{2}\] [From eq. (1)]
\[\Rightarrow \frac{dV}{dr} = 4\pi r^2 - 2\pi r \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2}\]
For the minimum or maximum values of V, we must have \[\frac{dV}{dr} = 0\] ..............(2)
\[\Rightarrow 4\pi r^2 - 2\pi r \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2} = 0 \left[ \text { From eq } . \left( 2 \right) \right]\]
\[ \Rightarrow 4\pi r^2 = 2\pi r \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2} \]
\[ \Rightarrow 4\pi r^2 = 2\pi r x ..............\left[ \text { From eq }. \left( 1 \right) \right] \]
\[ \Rightarrow x = 2r\]
Now,
\[\frac{d^2 V}{d r^2} = 8\pi r - 2\pi \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2} - \frac{2\pi r}{2} \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^{- \frac{1}{2}} \frac{\left( - 8\pi r \right)}{6}\]
\[ \Rightarrow \frac{d^2 V}{d r^2} = 8\pi r - 2\pi \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2} + \frac{4}{3} \pi^2 r^2 \left[ \frac{6}{\left( S - 4\pi r^2 \right)} \right]^\frac{1}{2} \]
\[ \Rightarrow \frac{d^2 V}{d r^2} = 8\pi r - 2\pi x + \frac{4}{3} \pi^2 r^2 \frac{1}{x} = 8\pi r - 4\pi r + \frac{2}{3} \pi^2 r\]
\[ \Rightarrow \frac{d^2 V}{d r^2} = 4\pi r + \frac{2}{3} \pi^2 r > 0\]
So, volume is minimum when x = 2r.
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x) = x3 \[-\] 1 on R .
f(x) = x3 (x \[-\] 1)2 .
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) = x3\[-\] 6x2 + 9x + 15
f(x) = (x - 1) (x + 2)2.
f(x) = xex.
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
`f(x)=xsqrt(1-x), x<=1` .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
Write sufficient conditions for a point x = c to be a point of local maximum.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the maximum value of f(x) = x1/x.
Let f(x) = x3+3x2 \[-\] 9x+2. Then, f(x) has _________________ .
The number which exceeds its square by the greatest possible quantity is _________________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .