मराठी

The Monthly Incomes of Aryan and Babban Are in the Ratio 3 : 4 and Their Monthly Expenditures Are in the Ratio 5 : 7. If Each Saves ₹ 15,000 per Month, Find Their Monthly Incomes Using Matrix Method. - Mathematics

Advertisements
Advertisements

प्रश्न

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?

बेरीज

उत्तर

Let the monthly incomes of Aryan and Babban be 3x and 4x, respectively.

Suppose their monthly expenditures are 5y and 7y, respectively.

Since each saves Rs 15,000 per month, 

Monthly saving of Aryan:  \[ 3x - 5y = 15, 000\]

Monthly saving of Babban: \[4x - 7y = 15, 000\]
The above system of equations can be written in the matrix form as follows:
`= [[3   -5 ],[4  -7   ]]``[[x] ,[ y ]]` =`[[15000],[15000]]`
or,
AX = B, where
`A= [[3   -5 ],[4  -7   ]]`,` X=[[x] ,[ y ]]` and `B = [[15000],[15000]]`

Now,

\[\left| A \right| = \begin{vmatrix}3 & - 5 \\ 4 & - 7\end{vmatrix} = - 21 - \left( - 20 \right) = - 1\]

Adj A=

\[\begin{bmatrix}- 7 & - 4 \\ 5 & 3\end{bmatrix}^T = \begin{bmatrix}- 7 & 5 \\ - 4 & 3\end{bmatrix}\]

So,

\[A^{- 1} = \frac{1}{\left| A \right|}adjA = - 1\begin{bmatrix}- 7 & 5 \\ - 4 & 3\end{bmatrix} = \begin{bmatrix}7 & - 5 \\ 4 & - 3\end{bmatrix}\]

\[\therefore X = A^{- 1} B\]

⇒  `[[x] ,[ y ]]` = `[[7      5],[4    -3]]` `[[15000 ] , [15000]]`

⇒  `[[x] ,[ y ]]` = `[[105000-75000],[60000-45000]]`

⇒  `[[x] ,[ y ]]` =`[[30000],[15000]]`

⇒ x = 30, 000 and y= 15, 000

Therefore,
Monthly income of Aryan =

\[3 \times \text{Rs 30, 000} = \text{Rs 90, 000}\]

Monthly income of Babban =

\[4 \times Rs 30, 000 = Rs 1, 20, 000\]

From this problem, we are encouraged to understand the power of savings. We should save certain part of our monthly income for the future.

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.3 | Q 78 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find BA


Compute the indicated product.

`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`


Show that AB ≠ BA in each of the following cases:

`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`

 


If A =  `[[1    1],[0    1]]`  show that A2 = `[[1       2],[0          1]]` and A3 = `[[1        3],[0       1]]`


If A = `[[ cos 2θ     sin 2θ],[ -sin 2θ    cos 2θ]]`, find A2.


If A =`[[2     -3          -5],[-1             4           5],[1           -3       -4]]` and B =`[[2         -2            -4],[-1               3                  4],[1            2           -3]]`

, show that AB = A and BA = B.

 

\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\],  then prove that A2 − A + 2I = O.


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]


If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0


Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


Solve the matrix equations:

`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`


Solve the matrix equations:

[2x 3] `[[1       2],[-3      0]] , [[x],[8]]=0`


If f (x) = x2 − 2x, find f (A), where A=


`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0


Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`


If `A=[[0,0],[4,0]]` find `A^16`


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


Give examples of matrices

A and B such that AB = O but BA ≠ O.


If A and B are square matrices of the same order, explain, why in general

(− B)2 ≠ A2 − 2AB + B2


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

Express the matrix \[A = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.

Given an example of two non-zero 2 × 2 matrices A and such that AB = O.

 

If  \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\]  , find AAT

 

If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.


Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


If AB = A and BA = B, where A and B are square matrices,  then


If  \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these

 


If \[\begin{bmatrix}2x + y & 4x \\ 5x - 7 & 4x\end{bmatrix} = \begin{bmatrix}7 & 7y - 13 \\ y & x + 6\end{bmatrix}\] 


If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is 

Disclaimer: option (a) and (d) both are the same.

 

If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find 2X – 3Y


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


If A, B and C are square matrices of same order, then AB = AC always implies that B = C


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • How many articles (in total) are sold by three schools?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×