हिंदी

Evaluate the Following: `([[1 3],[-1 -4]]+[[3 -2],[-1 1]])[[1 3 5],[2 4 6]]` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`

योग

उत्तर

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`

`⇒([[1+3                      3-2],[-1-1       -4+1]])``[[1         3           5],[2            4               6]]`

`⇒[[4                   1],[-2         -3]] [[1         3           5],[2           4            6]]`

`⇒[[4+2                12+4                      20+6],[-2-6       -6-12             -10-18]]`

`⇒ [[6                     16                       26],[-8         -18             -28]]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 5.1 | पृष्ठ ४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`   

Find AB


Compute the indicated product.

`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`


Compute the indicated products:

`[[a    b],[-b      a]][[a     -b],[b         a]]`


Compute the products AB and BA whichever exists in each of the following cases:

 [ab]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


If A =  `[[4       2],[-1        1]]` 

, prove that (A − 2I) (A − 3I) = O

 

If A = `[[ cos 2θ     sin 2θ],[ -sin 2θ    cos 2θ]]`, find A2.


If A =`[[2     -3          -5],[-1             4           5],[1           -3       -4]]` and B =`[[2         -2            -4],[-1               3                  4],[1            2           -3]]`

, show that AB = A and BA = B.

 

If


If [1 1 x] `[[1         0            2],[0           2         1],[2            1           0]] [[1],[1],[1]]` = 0, find x.


Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


If `A=[[0,0],[4,0]]` find `A^16`


`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3


Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show  that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.


If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

Give examples of matrices
A and B such that AB ≠ BA


In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array}Telephone \\ House calls \\ Letters\end{array}\]

The number of contacts of each type made in two cities X and Y is given in the matrix B as

\[\begin{array}Telephone & House calls & Letters\end{array}\]

\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City   X \\ City Y\end{array}\]

Find the total amount spent by the party in the two cities.

What should one consider before casting his/her vote − party's promotional activity of their social activities?

 

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT

 

If the matrix \[A = \begin{bmatrix}5 & 2 & x \\ y & z & - 3 \\ 4 & t & - 7\end{bmatrix}\]  is a symmetric matrix, find xyz and t.
 

 


 If  \[A = \begin{bmatrix}2 & 1 & 4 \\ 4 & 1 & 5\end{bmatrix}and B = \begin{bmatrix}3 & - 1 \\ 2 & 2 \\ 1 & 3\end{bmatrix}\] . Write the orders of AB and BA.
 

 


 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.


If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


If  \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then


If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find 2X – 3Y


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn 


The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.


If matrix A = [aij]2×2, where aij `{:(= 1  "if i" ≠ "j"),(= 0  "if i" = "j"):}` then A2 is equal to ______.


A matrix which is not a square matrix is called a ______ matrix.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×