Advertisements
Advertisements
Question
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
Solution
Let
\[P\left( n \right)\] be the statement given by
]\[P\left( n \right) : A^{n + 1} = B^n \left( B + \left( n + 1 \right)C \right)\]
For n = 1, we have
\[P\left( 1 \right) : A^2 = B\left( B + 2C \right)\]
\[\]
\[Here, \]
\[LHS = A^2 \]
\[ = \left( B + C \right)\left( B + C \right)\]
\[ = B\left( B + C \right) + C\left( B + C \right)\]
\[ = B^2 + BC + CB + C^2 \]
\[ = B^2 + 2BC \left[ \because BC = \text{CB and} C^2 = O \right]\]
\[ = B\left( B + 2C \right) = RHS\]
Hence, the statement is true for n = 1.
If the statement is true for n = k, then
\[P\left( k \right) : A^{k + 1} = B^k \left( B + \left( k + 1 \right)C \right)\] ...(1)
For
\[P\left( k + 1 \right)\] to be true, we must have
\[P\left( k + 1 \right) : A^{k + 2} = B^{k + 1} \left( B + \left( k + 2 \right)C \right)\]
Now,
\[\]\[A^{k + 2} = A^{k + 1} A\]
\[ = \left[ B^k \left( B + \left( k + 1 \right)C \right) \right]\left( B + C \right) \left[\text{From eq} . \left( 1 \right) \right]\]
\[ = \left[ B^{k + 1} + \left( k + 1 \right) B^k C \right]\left( B + C \right)\]
\[ = B^{k + 1} \left( B + C \right) + \left( k + 1 \right) B^k C\left( B + C \right)\]
\[ = B^{k + 2} + B^{k + 1} C + \left( k + 1 \right) B^k CB + \left( k + 1 \right) B^k C^2 \]
\[ = B^{k + 2} + B^{k + 1} C + \left( k + 1 \right) B^k BC \left[ \because BC = \text{CB and} C^2 = 0 \right]\]
\[ = B^{k + 2} + B^{k + 1} C + \left( k + 1 \right) B^{k + 1} C\]
\[ = B^{k + 2} + \left( k + 2 \right) B^{k + 1} C\]
\[ = B^{k + 1} \left[ B + \left( k + 2 \right)C \right]\]
So the statement is true for n = k+1.
Hence, by the principle of mathematical induction,
\[n \in N\]
APPEARS IN
RELATED QUESTIONS
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Show that AB ≠ BA in each of the following cases:
`A= [[5 -1],[6 7]]`And B =`[[2 1],[3 4]]`
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
If A = `[[2 -1],[3 2]]` and B = `[[0 4],[-1 7]]`find 3A2 − 2B + I
If A = `[[1 1],[0 1]]` show that A2 = `[[1 2],[0 1]]` and A3 = `[[1 3],[0 1]]`
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
Compute the elements a43 and a22 of the matrix:`A=[[0 1 0],[2 0 2],[0 3 2],[4 0 4]]` `[[2 -1],[-3 2],[4 3]] [[0 1 -1 2 -2],[3 -3 4 -4 0]]`
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
If A=then find λ, μ so that A2 = λA + μI
If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.
If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3
\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that
\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α} & \sqrt{2}\text{sin n α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin n α} \end{bmatrix}\] for all n ∈ N.
Give examples of matrices
A and B such that AB = O but A ≠ 0, B ≠ 0.
Give examples of matrices
A, B and C such that AB = AC but B ≠ C, A ≠ 0.
If A and B are square matrices of the same order, explain, why in general
(A − B)2 ≠ A2 − 2AB + B2
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array}Telephone \\ House calls \\ Letters\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
If \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.
If `[2 1 3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.
If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
If \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\] is such that A2 = I, then
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.
If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- How many articles (in total) are sold by three schools?
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.