Advertisements
Advertisements
प्रश्न
Using propertiesof determinants prove that:
`|(x , x(x^2), x+1), (y, y(y^2 + 1), y+1),( z, z(z^2 + 1) , z+1) | = (x-y) (y - z)(z - x)(x + y+ z)`
उत्तर
L.H.S
`R_1=> R_1- R_2. R_2 => R_2 - R_3`
`=|(X - Y , X^3 +X-Y-Y^3, X+1-Y-1), (Y-Z , Y^3 +Y-Z-Z^3, Y+ 1 - Z -1),(Z, Z(Z^2+1), (Z+1) )|`
`as X^3 - Y^3 +X - Y = (X-Y)(X^2 + XY + Y^2)+X-Y = (X - Y)(X^2 + XY + Y^2 +1) `
`=|((X-Y),(X - Y)(X^2+Y^2+XY+1) , (X-Y)), ((Y-Z), (Y-Z)(Y^2+Z^2+YZ + 1),(Y-Z)), (Z , Z(Z^2 +1) , Z+1)|`
`= (X - Y)(Y-Z) |(1 , X^2+ Y^2+XY+1 , 1 ), (1 , Y^2+ Z^2+YZ+1 ,1),(Z , Z(Z^2+1), Z+1)|`
`R_1 =>R_1- R_2`
= `(X-Y)(Y-Z) |(0, (X-Z)(X+Y+Z), 0), (1 ,Y^2+Z^2+YZ+1 ,1),(Z , Z(Z^2+1) , Z+1)|`
`{(as, (X^2+Y^2+XY+1) - (Y^2 + Z^2 +YZ+1)),
(=,X^2+Y^2+XY+1- Y^2-Z^2-YZ-1),
(=,(X-Z)(X+Z)+Y(X-Z)= (X-Z)(X+Y+Z)):}}`
=`(X-Y)(Y-Z)(X-Z)| (0, X+Y+Z, 0),(1 , Y^2+Z^2+YZ+1, 1), (Z , Z(Z^2 + 1), Z+1) |`
`= (X-Y)(Y-Z)(X-Z)[-(X+Y+Z)(Z+1-Z)]`
`= (X-Y)(Y-Z)(Z-X)(X+Y+Z)`
APPEARS IN
संबंधित प्रश्न
Using properties of determinants prove the following: `|[1,x,x^2],[x^2,1,x],[x,x^2,1]|=(1-x^3)^2`
If ` f(x)=|[a,-1,0],[ax,a,-1],[ax^2,ax,a]| ` , using properties of determinants find the value of f(2x) − f(x).
Using the property of determinants and without expanding, prove that:
`|(b+c, q+r, y+z),(c+a, r+p, z +x),(a+b, p+q, x + y )| = 2|(a,p,x),(b,q,y),(c, r,z)|`
Evaluate `|(x, y, x+y),(y, x+y, x),(x+y, x, y)|`
Using properties of determinants, prove that
`|(sin alpha, cos alpha, cos(alpha+ delta)),(sin beta, cos beta, cos (beta + delta)),(sin gamma, cos gamma, cos (gamma+ delta))| = 0`
Using properties of determinants, prove the following:
Using properties of determinants, prove that
`|[b+c , a ,a ] ,[ b , a+c, b ] ,[c , c, a+b ]|` = 4abc
Using properties of determinants, prove that:
`|(a,b,b+c),(c,a,c+a),(b,c,a+b)|` = (a+b+c)(a-c)2
Evaluate the following determinants:
`|(x - 1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)| = 0`
Find the value (s) of x, if `|(1, 4, 20),(1, -2, -5),(1, 2x, 5x^2)|` = 0
By using properties of determinants, prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0.
Without expanding evaluate the following determinant:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
Using properties of determinant show that
`|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` = 0
Solve the following equation:
`|(x + 2, x + 6, x - 1),(x + 6, x - 1, x + 2),(x - 1, x + 2, x + 6)|` = 0
If `|("x"^"k", "x"^("k" + 2), "x"^("k" + 3)),("y"^"k", "y"^("k" + 2), "y"^("k" + 3)),("z"^"k", "z"^("k" + 2), "z"^("k" + 3))|` = (x - y) (y - z) (z - x)`(1/"x"+ 1/"y" + 1/"z") ` then
Select the correct option from the given alternatives:
The value of a for which system of equation a3x + (a + 1)3 y + (a + 2)3z = 0 ax + (a +1)y + (a + 2)z = 0 and x + y + z = 0 has non zero Soln. is
Answer the following question:
Evaluate `|(101, 102, 103),(106, 107, 108),(1, 2, 3)|` by using properties
Answer the following question:
By using properties of determinant prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0
Evaluate: `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`
The value of determinant `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` is ______.
If x, y, z ∈ R, then the value of determinant `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` is equal to ______.
The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________
The value of the determinant `|(1, cos(β - α), cos(γ - α)),(cos(α - β), 1, cos(γ - β)),(cos(α - γ), cos(β - γ), 1)|` is equal to ______.
Without expanding determinants find the value of `|(10,57,107), (12, 64, 124), (15, 78, 153)|`
Without expanding evaluate the following determinant.
`|(1, a, a + c),(1, b, c + a),(1, c, a + b)|`
By using properties of determinant prove that `|(x + y, y+z, z +x),(z,x,y),(1,1,1)| =0`
Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`