Advertisements
Advertisements
प्रश्न
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
उत्तर
log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2
log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2 `"log"_5^5` (∴ `"log"_5^5` = 1 )
∴ log5 `((x^4 + "y"^4)/(x^4 - "y"^4)) = "log"_5^(5^2)`
∴ `(x^4 + "y"^4)/(x^4 -"y"^4)` = 52 (∴ log a = log b ⇒ a = b)
∴ x4 +y4 = 25(x4 - y4)
∴ x4 + y4 = 25x4 – 25y4
∴ y4 + 25y4 = 25x4 - x4
∴ 26y4 = 24x4
Differentiating w. r. t. x, we get
∴ `26xx4y^3("dy")/("d"x) = 24xx4x^3`
∴ `("dy")/("d"x) = (24xx4x^3)/(26xx4"y"^3)`
∴ `("dy")/("d"x) = (12x^3)/(13"y"^3)`
Hence proved.
संबंधित प्रश्न
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx` for the function given in the question:
yx = xy
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `dy/dx` if y = xx + 5x
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Differentiate 3x w.r.t. logx3.
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (ax + b)
Find the nth derivative of the following : log (2x + 3)
If f(x) = logx (log x) then f'(e) is ______
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
Derivative of loge2 (logx) with respect to x is _______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`2^(cos^(2_x)`
`8^x/x^8`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
The derivative of x2x w.r.t. x is ______.
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`