Advertisements
Advertisements
प्रश्न
If xy = yx, then find `dy/dx`
उत्तर
xy = yx
y log x = x log y
By differentiating on both sides,
`y * 1/x + log x dy/dx = x * 1/y dy/dx + log y`
`dy/dx(logx - x/y) = log y - y/x`
`dy/dx = (log y - y/x)/(log x - x/y)`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Find `dy/dx` for the function given in the question:
yx = xy
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `dy/dx` if y = xx + 5x
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : log(logx)
Find the nth derivative of the following : log (ax + b)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`d/dx(x^{sinx})` = ______
`2^(cos^(2_x)`
`8^x/x^8`
`log (x + sqrt(x^2 + "a"))`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`