हिंदी

If cos y = x cos (a + y), with cos a ≠ ± 1, prove that dydx=cos2(a+y)sina - Mathematics

Advertisements
Advertisements

प्रश्न

If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`

योग

उत्तर

cos y = x cos (a + y)

`therefore x = (cos y)/(cos (a + y))`

On differentiating with respect to y,

`cos (a + y) d/dy cos y - cos y d/dy`

`therefore dx/dy = (cos (a + y))/(cos^2 (a + y))`

`= (- sin y cos (a + y) + cos y sin (a + y))/(cos^2 (a + y))`

`= (sin (a + y) cos y - cos (a + y) sin y)/(cos^2 (a + y))`

`= (sin (a + y - y))/(cos^2 (a + y))`   ... [∵ sin (A-B) = sin A  cos B - cos A sin B]

`= (sin a)/(cos^2  (a + y))`

`therefore dy/dx = (cos^2 (a + y))/(sin a)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.9 [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.9 | Q 16 | पृष्ठ १९२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

 

if xx+xy+yx=ab, then find `dy/dx`.


Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


Find `dy/dx` for the function given in the question:

`xy = e^((x – y))`


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `dy/dx` if y = x+ 5x


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


Find `(d^2y)/(dx^2)` , if y = log x


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


Find `"dy"/"dx"` if y = xx + 5x


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If y = (log x)x + xlog x, find `"dy"/"dx".`


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


Find the second order derivatives of the following : x3.logx


Find the second order derivatives of the following : log(logx)


Find the nth derivative of the following : log (ax + b)


Find the nth derivative of the following : log (2x + 3)


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


`d/dx(x^{sinx})` = ______ 


`"d"/"dx" [(cos x)^(log x)]` = ______.


Derivative of `log_6`x with respect 6x to is ______


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


The derivative of x2x w.r.t. x is ______.


Find the derivative of `y = log x + 1/x` with respect to x.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×