Advertisements
Advertisements
प्रश्न
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
उत्तर
Let y = u.v.w = u. (vw) ....(i)
Differentiating (i) both sides w.r.t. x, we get
(i) `dy/dx = u' .(vw) + u d/dx (vw)`
= u'. (vw) + u [v' w + vw']
= u'. v. w + uv w + uvw'
`= (du)/dx. v. w + u. (dv)/dx . w + u.v. (dw)/dx`
(ii) y = u. v .w
Taking log on both sides, we get
log y = log u + log v + log w ....(ii)
Differentiating (ii) both sides w.r.t. x, we get
`1/y dy/dx = 1/u (du)/dx + 1/v (dv)/dx + 1/w (dw)/dx`
`dy/dx = y (1/u (du)/dx + 1/v (dv)/dx + 1/w (dw)/dx)`
`= uvw (1/u (du)/dx + 1/v (dv)/dx + 1/w (dw)/dx)`
`= vw (du)/dx + uw (dv)/dx + uv (dw)/dx`
`= (du)/dx. v. w + u. (dv)/dx .w + u. v (dw)/dx.`
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
yx = xy
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Evaluate
`int 1/(16 - 9x^2) dx`
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : log(logx)
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (2x + 3)
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
Derivative of loge2 (logx) with respect to x is _______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`d/dx(x^{sinx})` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`2^(cos^(2_x)`
`log (x + sqrt(x^2 + "a"))`
`log [log(logx^5)]`
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `9^(log_3x)`, find `dy/dx`.
Find the derivative of `y = log x + 1/x` with respect to x.