Advertisements
Advertisements
प्रश्न
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
उत्तर
Let, y = `sqrt(((x - 1)(x - 2))/((x - 3)(x - 4)(x - 5)))` ...(1)
or, y = `[((x - 1)(x - 2))/((x - 3)(x - 4)(x - 5))]^(1/2)`
Taking logarithm of both sides,
`log y = 1/2 ((x - 1)(x - 2))/((x - 3)(x - 4)(x - 5)) ... [because log m^n = n log m]`
या `log y = 1/2 log (x - 1)(x - 2) - 1/2 log (x - 3)(x - 4)(x - 5) ... [because log m/n = log m - log n]`
`= 1/2 [log (x- 1) + log (x - 2)] - 1/2 [log (x - 3) + log (x - 4) + log (x - 5)] ...[because log m . n = log m + log n]`
Representing both sides by x,
`1/ y dy/dx = 1/2 [d/dx log (x - 1) + d/dx log (x - 2)] - 1/2 [d/dx log (x - 3) + d/dx log (x - 4) + d/dx log (x - 5)]`
`= 1/2 y [1/(x - 1) d/dx (x - 1) + 1/(x - 2) d/dx (x - 2)] - 1/2 y [1/(x - 3) d/dx (x - 3) + 1/(x - 4) d/dx (x - 4) + 1/(x - 5) d/dx (x - 5)]`
`= 1/2 y [1/(x - 1) + 1/(x - 2)] - 1/2 y [1/(x - 3) + 1/(x - 4) + 1/(x - 5)]`
`= 1/2 y [1/(x - 1) + 1/(x - 2) - 1/(x - 3) - 1/(x - 4) - 1/(x - 5)]`
Putting the value of y from equation (1),
`dy/dx = 1/2 sqrt(((x - 1)(x - 2))/((x - 3)(x - 4)(x - 5))) [1/(x - 1) + 1/(x - 2) - 1/(x - 3) - 1/(x - 4) - 1/(x - 5)]`
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
yx = xy
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `dy/dx` if y = xx + 5x
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `(d^2y)/(dx^2)` , if y = log x
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Find `"dy"/"dx"` if y = xx + 5x
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Find the nth derivative of the following : log (2x + 3)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
`d/dx(x^{sinx})` = ______
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.
If xy = yx, then find `dy/dx`