हिंदी

Differentiate the function with respect to x. cos x . cos 2x . cos 3x - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x

योग

उत्तर

Let, y = cos x · cos 2x · cos 3x           …(1)

Taking logarithm of both the sides,

log y = log (cos x · cos2x · cos 3x)

= log cos x + log cos 2 x + log cos 3x
    ....[∵ log m · n = log m + log n]

Differentiating both sides with respect to x,

1ydydx=ddxlogcosx+ddxlogcos2 x+ddxlogcos3x

1y dydx=1cosxddxcosx+1cos 2 xddxcos 2x1cos 3 xddxcos 3 x

=1cosx(-sinx)+1cos 2x(-sin 2x)ddx(2x)+1cos 3x(-sin 3x)ddx(3x)

=-sincosx-sin 2xcos 2x(2)-sin 3xcos 3x(3)

=-tanx-2 tan 2x -3 tan 3x =-(tanx +2tan2x +3 tan3x)

dydx=-y(tanx +2tan 2x +3 tan 3x)

Putting the value of y from equation (1)

dydx=-cosxcos 2 xcos 3 x[tanx+2 tan 2 x +3 tan 3 x]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.5 [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.5 | Q 1 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

 

If y=log[x+x2+a2] show that (x2+a2)d2ydx2+xdydx=0

 

Differentiate the function with respect to x.

xx-2sinx


Differentiate the function with respect to x.

(x+1x)x+x(1+1x)


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Find dydx for the function given in the question:

yx = xy


Find dydx for the function given in the question:

(cos x)y = (cos y)x


Find dydx for the function given in the question:

xy=e(xy)


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If u, v and w are functions of x, then show that ddx(u.v.w)=dudxv.w+u.dvdx.w+u.v.dwdx in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If y=eacos-1x, -1 <= x <= 1 show that (1-x2)d2ydx2-xdydx-a2y=0


Find dydx if y = x+ 5x


If (sinx)y=x+y,finddydx


If x = esin3t, y = ecos3t, then show that dydx=-ylogxxlogy.


If x = a cos3t, y = a sin3t, show that dydx=-(yx)13.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that dydx=-3y2x.


If x = sin–1(et), y = 1-e2t,show that sinx+dydx = 0


If x = 2bt1+t2,y=a(1-t21+t2),show thatdxdy=-b2ya2x.


Find the second order derivatives of the following : log(logx)


If y = log(x+x2+a2)m, show that (x2+a2)d2ydx2+xddx = 0.


Find the nth derivative of the following : log (ax + b)


Choose the correct option from the given alternatives :

If xy = yx, then dydx = ..........


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If y = log[1-cos(3x2)1+cos(3x2)], find dydx


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


Derivative of loge2 (logx) with respect to x is _______.


If y = {f(x)}ϕ(x), then dydx is ______ 


If y = tan-1 (1-cos3xsin3x), then dydx = ______.


ddx(xsinx) = ______ 


ddx[(cosx)logx] = ______.


Derivative of log6x with respect 6x to is ______


8xx8


If log10(x3-y3x3+y3) = 2 then dydx = ______.


Find dydx, if y = (sin x)tan x – xlog x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.