Advertisements
Advertisements
प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
उत्तर
It is given that:
`y=log[x+sqrt(x^2+a^2)]`
Differentiating equation (1) with respect to x, we get
`dy/dx=(1+x/sqrt(x^2+a^2))/(x+sqrt(x^2+a^2))`
`dy/dx=1/sqrt(x^2+a^2)..........(2)`
`xdy/dx=x/sqrt(x^2+a^2)...........(3)`
Again differentiating equation (2) with respect to x, we get
`(d^2y)/(dx^2)=-x/(x^2+a^2)^(3/2)`
`(x^2+y^2)(d^2y)/(dx^2)=-x/sqrt(x^2+a^2)..............(4)`
Adding equation (3) and (4), we get
`(x^2+y^2)(d^2y)/(dx^2)+xdy/dx=-x/sqrt(x^2+a^2)+x/sqrt(x^2+a^2)=0`
`(x^2+y^2)(d^2y)/(dx^2)+xdy/dx=0`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
Find `dy/dx` if y = xx + 5x
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `(d^2y)/(dx^2)` , if y = log x
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
Find the second order derivatives of the following : x3.logx
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
Find the nth derivative of the following : log (ax + b)
If f(x) = logx (log x) then f'(e) is ______
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
Derivative of `log_6`x with respect 6x to is ______
`8^x/x^8`
`log [log(logx^5)]`
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
If y = `9^(log_3x)`, find `dy/dx`.
Evaluate:
`int log x dx`