Advertisements
Advertisements
प्रश्न
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
उत्तर
ey = yx
∴ log ey = log yx
∴ y log e = x log y
∴ y = x log y ...[∵ log e = 1] ...(1)
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = x"d"/"dx"(logy) + (logy)."d"/"dx"(x)`
∴ `"dy"/"dx" = x xx (1)/y."dy"/"dx" + (logy) xx 1`
∴ `"dy"/"dx" = x/y"dy"/"dx" + log y`
∴ `(1 - x/y)"dy"/"dx"` = log y
∴ `((y - x)/(y))"dy"/"dx"` = log y
∴ `"dy"/"dx" = (ylogy)/(y - x)`
= `(ylogy)/(y - (y/logy)` ...[By (1)]
∴ `"dy"/"dx" = (logy)^2/(log y - 1)`.
Alternative Method :
ey = yx
∴ log ey = log yx
∴ y log e = x log y
∴ y = x log y ...[∵ log e = 1]
∴ x = `y/logy`
Differentiating both sides w.r.t. x, we get
`"dx"/"dy" = "d"/"dy"(y/logy)`
= `((logy)."d"/"dy"(y) - y."d"/"dy"(logy))/(logy)^2`
= `((logy) xx 1 - y xx (1)/y)/(logy)^2`
= `(logy - 1)/(logy)^2`
∴ `"dy"/"dx" = (1)/((dx/dy)) = (logy)^2/(logy - 1)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Find `(d^2y)/(dx^2)` , if y = log x
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : x3.logx
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
The derivative of x2x w.r.t. x is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.