Advertisements
Advertisements
प्रश्न
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
उत्तर
Let, `y =(x cos x)^x + (x sin x)^(1/x)`
Differentiating both sides with respect to x,
`dy/dx = (du)/dx + (dv)/dx` ...(1)
Now, u = (x cos x)x
Taking logarithm of both sides,
log u = log (x cos x)x = x log (x cos x)
Differentiating both sides with respect to x,
`1/u (du)/dx = x d/dx log (x cos x) + log (x cos x) d/dx (x)`
`= x * 1/(x cos x) d/dx (x cos x) + log (x cos x) xx 1`
`= 1/(cos x) [x d/dx cos x + cos x d/dx (x)] + log (x cos x)`
`1/(cos x) [x (- sin x) + cos x xx (1)] + log (x cos x)` ...`[because log_"e" "mn" = log_"e" "m"+ log_"e" "n"]`
`= - x (sin x)/(cos x) + (cos x)/(cos x)` + log x + log cos x
= - x tan x + 1 + log x + log cos x
`therefore (du)/dx` = u [1 - x tan x + log x + log cos x]
= (x cos x)x [ 1 - x tan x + log x + log cos x] ...(2)
and `v = (x sin x)^(1/x)`
Taking logarithm of both sides,
log v = log (x sin x)1/x = `1/x` log (x sin x)
`1/v (dv)/dx = 1/x d/dx log (x sin x) + log (x sin x) d/dx 1/x`
`= 1/x 1/(x sin x) * d/dx (x sin x) + log (x sin x) (-1) x^-2`
`= 1/(x^2 sin x) [x d/dx sin x + sin x d/dx (x)] + (log x + log sin x)(-1) x^-2`
`= 1/(x^2 sin x)` [x cos x + sin x] `- 1/x^2 log x - 1/x^2 log sin x`
`= 1/x^2` [1 + x cot x - log (x sin x)]
`therefore (dv)/dx = v * 1/x^2` [1 + x cot x - log (x sin x)]
`= ((x sin x)^(1/x))/x^2` [1 + x cot x - log (x sin x)] ...(3)
Putting the value of `(du)/dx` from equation (2) and `(dv)/dx` from (3) in equation (1),
`= (x cos x)^x [log (x log x) - x tan x + 1] + ((x sin x)^(1/x))/x^2 [1 + x cot x - log (x sin x)]`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
Find `"dy"/"dx"` if y = xx + 5x
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If f(x) = logx (log x) then f'(e) is ______
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`d/dx(x^{sinx})` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`2^(cos^(2_x)`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
The derivative of x2x w.r.t. x is ______.
If y = `9^(log_3x)`, find `dy/dx`.
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`
If xy = yx, then find `dy/dx`