हिंदी

Differentiate the function with respect to x. (xcosx)x+(xsinx)1x - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`

योग

उत्तर

Let, `y =(x cos x)^x + (x sin x)^(1/x)`

Differentiating both sides with respect to x,

`dy/dx = (du)/dx + (dv)/dx`         ...(1)

Now, u = (x cos x)x

Taking logarithm of both sides,

log u = log (x cos x)x = x log (x cos x)

Differentiating both sides with respect to x,

`1/u (du)/dx = x d/dx log (x cos x) + log (x cos x) d/dx (x)`

`= x * 1/(x cos x) d/dx (x cos x) + log (x cos x) xx 1`

`= 1/(cos x) [x d/dx cos x + cos x d/dx (x)] + log (x cos x)`

`1/(cos x) [x (- sin x) + cos x xx (1)] + log (x cos x)`     ...`[because log_"e" "mn" = log_"e"  "m"+ log_"e" "n"]`

`= - x (sin x)/(cos x) + (cos x)/(cos x)` + log x + log cos x

= - x tan x + 1 + log x + log cos x

`therefore (du)/dx` = u [1 - x tan x + log x + log cos x]

= (x cos x)x [ 1 - x tan x + log x + log cos x]           ...(2)

and `v = (x sin x)^(1/x)`

Taking logarithm of both sides,

log v = log (x sin x)1/x = `1/x` log (x sin x)

`1/v (dv)/dx = 1/x d/dx log (x sin x) + log (x sin x) d/dx 1/x`

`= 1/x 1/(x sin x) * d/dx (x sin x) + log (x sin x) (-1) x^-2`

`= 1/(x^2 sin x) [x d/dx sin x + sin x d/dx (x)] + (log x + log sin x)(-1) x^-2`

`= 1/(x^2 sin x)` [x cos x + sin x] `- 1/x^2  log x - 1/x^2  log sin x`

`= 1/x^2` [1 + x cot x - log (x sin x)]

`therefore (dv)/dx = v * 1/x^2` [1 + x cot x - log (x sin x)]

`= ((x sin x)^(1/x))/x^2` [1 + x cot x - log (x sin x)]                ...(3)

Putting the value of `(du)/dx` from equation (2) and `(dv)/dx` from (3) in equation (1),

`= (x cos x)^x [log (x log x) - x tan x + 1] + ((x sin x)^(1/x))/x^2 [1 + x cot x - log (x sin x)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.5 [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.5 | Q 11 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


Find `"dy"/"dx"` if y = xx + 5x


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.


If f(x) = logx (log x) then f'(e) is ______


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


`d/dx(x^{sinx})` = ______ 


`"d"/"dx" [(cos x)^(log x)]` = ______.


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


`2^(cos^(2_x)`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


The derivative of x2x w.r.t. x is ______.


If y = `9^(log_3x)`, find `dy/dx`.


Find `dy/dx`, if y = (log x)x.


Evaluate:

`int log x dx`


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×