Advertisements
Advertisements
प्रश्न
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
उत्तर
Let, y = xx + xa + ax + aa
On differentiating with respect to x,
`dy/dx = d/dx (x^x) + d/dx (x^a) + d/dx (a^x) + (a^a) d/dx (1)`
`= d/dx (x^x) + ax^(a - 1) + a^x log a + 0` ...(1)
u = xx (let)
Taking log on both sides,
log u = x log x
On differentiating with respect to x,
`1/u (du)/dx = x d/dx log x + log x d/dx (x)`
`= x * 1/x + log x = (1 + log x)`
`therefore (du)/dx = u (1 + log x) = x^x (1 + log x)`
i.e. `d/dx (x^x) = (du)/dx = x^x (1 + log x)`
Putting the value of `d/dx (x^x)` in equation (1),
`dy/dx = x^x (1 + log x) + ax^(a - 1) + a^x log a`
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Find `dy/dx` for the function given in the question:
yx = xy
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `(d^2y)/(dx^2)` , if y = log x
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
Find the nth derivative of the following : log (2x + 3)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
Derivative of loge2 (logx) with respect to x is _______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`d/dx(x^{sinx})` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`log [log(logx^5)]`
The derivative of log x with respect to `1/x` is ______.
Evaluate:
`int log x dx`
If xy = yx, then find `dy/dx`