Advertisements
Advertisements
प्रश्न
Find the second order derivatives of the following : log(logx)
उत्तर
Let y = log(logx)
Then `"dy"/"dx" = "d"/"dx"[log (logx)]`
= `(1)/"logx" . "d"/"dx"(logx)`
= `(1)/"logx" xx (1)/x = (1)/"xlogx"`
and
`(d^2y)/(dx^2) = "d"/"dx"(xlogx)^-1`
= `(-1)(xlogx)^-2."d"/"dx"(xlogx)`
= `(-1)/(xlogx)^2.[x"d"/"dx"(logx) + (logx)."d"/"dx"(x)]`
= `(-1)/(xlogx)^2.[x xx 1/x + (logx) xx 1]`
= `-(1 + logx)/(xlogx)^2`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `dy/dx` if y = xx + 5x
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Differentiate 3x w.r.t. logx3.
Find the nth derivative of the following : log (ax + b)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
Derivative of loge2 (logx) with respect to x is _______.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
Derivative of `log_6`x with respect 6x to is ______
`8^x/x^8`
`log (x + sqrt(x^2 + "a"))`
`log [log(logx^5)]`
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.