Advertisements
Advertisements
प्रश्न
`log (x + sqrt(x^2 + "a"))`
उत्तर
Let y = `log (x + sqrt(x^2 + "a"))`
Differentiating both sides w.r.t. x
`"dy"/"dx" = "d"/"dx" log (x + sqrt(x^2 + "a"))`
= `1/(x + sqrt(x^2 + "a")) * "d"/"dx" (x + sqrt(x^2 + "a"))`
= `1/(x + sqrt(x^2 + "a")) * [1 + 1/(2sqrt(x^2 + "a")) xx "d"/"dx" (x^2 + "a")]`
= `1/(x + sqrt(x^2 + "a")) * [1 + 1/(2sqrt(x^2 + "a")) * 2x]`
= `1/(x + sqrt(x^2 + "a")) * [1 + x/(sqrt(x^2 + "a"))]`
= `1/(x + sqrt(x^2 + "a")) * ((sqrt(x^2 + "a") + x)/(sqrt(x^2 + "a")))`
= `1/(sqrt(x^2 + "a")`
Hence. `"dy"/"dx" = 1/sqrt(x^2 + "a")`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`(log x)^(cos x)`
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `dy/dx` if y = xx + 5x
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Differentiate 3x w.r.t. logx3.
Find the nth derivative of the following : log (2x + 3)
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`"d"/"dx" [(cos x)^(log x)]` = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`2^(cos^(2_x)`
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
If y = `9^(log_3x)`, find `dy/dx`.
Evaluate:
`int log x dx`