Advertisements
Advertisements
Question
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Solution
We know
`cos^-1x+cos^-1y=cos^-1[xy-sqrt(1-x^2)sqrt(1-y^2)]`
Now,
`cos^-1 x/2+cos^-1 y/3=alpha,`
⇒ `cos^-1[x/2 y/3-sqrt(1-x^2/4)sqrt(1-y^2/3)]=alpha`
⇒ `x/2 y/3-sqrt(1-x^2/4)sqrt(1-y^2/3)=cos alpha`
⇒ `xy-sqrt(4-x^2)sqrt(9-y^2)=6cosalpha`
⇒ `sqrt(4-x^2)sqrt(9-y^2)=xy-6cosalpha`
⇒ `(4-x^2)(9-y^2)=x^2y^2+36cos^2alpha-12xycosalpha` [Squaring both sides]
⇒ `36-4y^2-9x^2+x^2y^2=x^2y^2+36cos^2alpha-12xycosalpha`
⇒ `36-4y^2-9x^2+36cos^2alpha-12xycosalpha`
⇒ `9x^2-12xy cosalpha+4y^2=36-36cos^2alpha`
⇒ `9x^2-12xy cosalpha+4y^2=36sin^2alpha`
APPEARS IN
RELATED QUESTIONS
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
`sin(sin^-1 1/5+cos^-1x)=1`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of cos−1 (cos 1540°).
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
If sin−1 x − cos−1 x = `pi/6` , then x =
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If 4 cos−1 x + sin−1 x = π, then the value of x is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Find the domain of `sec^(-1)(3x-1)`.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
tanx is periodic with period ____________.
The value of sin `["cos"^-1 (7/25)]` is ____________.