English

If `Cos^-1 X/2+Cos^-1 Y/3=Alpha,` Then Prove That `9x^2-12xy Cosa+4y^2=36sin^2a.` - Mathematics

Advertisements
Advertisements

Question

If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`

Solution

We know

`cos^-1x+cos^-1y=cos^-1[xy-sqrt(1-x^2)sqrt(1-y^2)]`

Now,

`cos^-1  x/2+cos^-1  y/3=alpha,`

⇒ `cos^-1[x/2  y/3-sqrt(1-x^2/4)sqrt(1-y^2/3)]=alpha`

⇒ `x/2  y/3-sqrt(1-x^2/4)sqrt(1-y^2/3)=cos alpha`

⇒ `xy-sqrt(4-x^2)sqrt(9-y^2)=6cosalpha`

⇒ `sqrt(4-x^2)sqrt(9-y^2)=xy-6cosalpha`

⇒ `(4-x^2)(9-y^2)=x^2y^2+36cos^2alpha-12xycosalpha`      [Squaring both sides]

⇒ `36-4y^2-9x^2+x^2y^2=x^2y^2+36cos^2alpha-12xycosalpha`

⇒ `36-4y^2-9x^2+36cos^2alpha-12xycosalpha`

⇒ `9x^2-12xy  cosalpha+4y^2=36-36cos^2alpha`

⇒ `9x^2-12xy  cosalpha+4y^2=36sin^2alpha`
 

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.13 [Page 92]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.13 | Q 1 | Page 92

RELATED QUESTIONS

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


`sin(sin^-1  1/5+cos^-1x)=1`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of cos−1 (cos 1540°).


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If sin−1 − cos−1 x = `pi/6` , then x = 


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Find the domain of `sec^(-1)(3x-1)`.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


tanx is periodic with period ____________.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×