English

Evaluate: `Sin{Cos^-1(-3/5)+Cot^-1(-5/12)}` - Mathematics

Advertisements
Advertisements

Question

Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`

Solution

`sin{cos^-1(-3/5)+cot^-1(-5/12)}=sin{pi-cos^-1(3/5)+pi-cot^-1(5/12)}`

`=sin{2pi-[cos^-1(3/5)+cot^-1(5/12)]}`

`=-sin{cos^-1(3/5)+cot^-1(5/12)}`

`=-sin{sin^-1[sqrt(1-(3/5)^2)]+sin^-1[(12/5)/sqrt(1+(12/5)^2)]}`

`=-sin(sin^-1  4/5+sin^-1  12/13)`

`=-sin{sin^-1[4/5xxsqrt(1-(12/13)^2)=12/13xxsqrt(1-(4/5)^2)]}`

`=-sin[sin^-1(20/65+36/65)]`

`=-sin[sin^-1(56/65)]`

`=-56/65`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.09 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.09 | Q 3 | Page 59

RELATED QUESTIONS

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`tan{cos^-1(-7/25)}`


`tan^-1x+2cot^-1x=(2x)/3`


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of sin1 (sin 1550°).


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos−1 (cos 6).


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×