English

Evaluate Sin \[\Left( \Frac{1}{2} \Cos^{- 1} \Frac{4}{5} \Right)\] - Mathematics

Advertisements
Advertisements

Question

Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]

Solution

We know that

\[\cos^{- 1} x = 2 \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}}\]
\[ \tan^{- 1} x = \sin^{- 1} \frac{x}{\sqrt{1 + x^2}}\]

\[\therefore \sin\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right) = \sin\left( \frac{1}{2}2 \tan^{- 1} \sqrt{\frac{1 - \frac{4}{5}}{1 + \frac{4}{5}}} \right)\]
\[ = \sin\left( \tan^{- 1} \sqrt{\frac{\frac{1}{5}}{\frac{9}{5}}} \right)\]
\[ = \sin\left( \tan^{- 1} \frac{1}{3} \right)\]
\[ = \sin\left\{ \sin^{- 1} \left( \frac{\frac{1}{3}}{\sqrt{1 + \frac{1}{9}}} \right) \right\}\]
\[ = \sin\left( \sin^{- 1} \frac{1}{\sqrt{10}} \right)\]
\[ = \frac{1}{\sqrt{10}} \left[ \because \sin\left( \sin^{- 1} x \right) = x \right]\]

∴ \[\sin\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right) = \frac{1}{\sqrt{10}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 17 | Page 117

RELATED QUESTIONS

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sec(sin^-1  12/13)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


`2tan^-1  3/4-tan^-1  17/31=pi/4`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the domain of `sec^(-1)(3x-1)`.


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×