Advertisements
Advertisements
Question
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Solution
We know that
\[\cos^{- 1} x = 2 \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}}\]
\[ \tan^{- 1} x = \sin^{- 1} \frac{x}{\sqrt{1 + x^2}}\]
\[\therefore \sin\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right) = \sin\left( \frac{1}{2}2 \tan^{- 1} \sqrt{\frac{1 - \frac{4}{5}}{1 + \frac{4}{5}}} \right)\]
\[ = \sin\left( \tan^{- 1} \sqrt{\frac{\frac{1}{5}}{\frac{9}{5}}} \right)\]
\[ = \sin\left( \tan^{- 1} \frac{1}{3} \right)\]
\[ = \sin\left\{ \sin^{- 1} \left( \frac{\frac{1}{3}}{\sqrt{1 + \frac{1}{9}}} \right) \right\}\]
\[ = \sin\left( \sin^{- 1} \frac{1}{\sqrt{10}} \right)\]
\[ = \frac{1}{\sqrt{10}} \left[ \because \sin\left( \sin^{- 1} x \right) = x \right]\]
∴ \[\sin\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right) = \frac{1}{\sqrt{10}}\]
APPEARS IN
RELATED QUESTIONS
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sec(sin^-1 12/13)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
`2tan^-1 3/4-tan^-1 17/31=pi/4`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the domain of `sec^(-1)(3x-1)`.
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
The value of sin `["cos"^-1 (7/25)]` is ____________.