English

Solve the following: πcos-1x+sin-1 x2=π6 - Mathematics

Advertisements
Advertisements

Question

Solve the following:

cos-1x+sin-1 x2=π6

Sum

Solution

cos-1x+sin-1(x2)=π6

(π2sin-1x)+sin-1(x2)=π6

π2π6=sin-1xsin-1(x2)

sin-1xsin-1(x2)=π3=sin-1(32)

sin-1x=sin-1(32)+sin-1(x2)

sin-1(x)=sin-1(321x24+x21-34)  ...[sin-1x+sin-1y=sin-1 [x1-y2+y1-x2].

sin-1(x)=sin-1[(324x22)+x2.12]

x=34-x24+x4

x-x4=34-x24

3x4= 34-x24

Squaring both the sides

9x2 = 3(4 − x2)

3x2 = 4 - x2

3x2 + x2 = 4

4x2 = 4

x= 1

x = ± 1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.12 [Page 89]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.12 | Q 3.2 | Page 89

RELATED QUESTIONS

 

Show that:

2sin-1(35)-tan-1(1731)=π4

 

 

Find the domain of f(x)=cos-1x+cosx.


sin-1(sin 17π8)


Evaluate the following:

tan-1(tan π3)


Evaluate the following:

tan-1(tan1)


Evaluate the following:

tan-1(tan4)


Evaluate the following:

cosec-1(cosec 11π6)


Evaluate the following:

sin(sin-1 725)

 


Evaluate the following:

sin(sec-1 178)


Prove the following result

tan(cos-1 45+tan-1 23)=176


Prove the following result

cos(sin-1 35+cot-1 32)=6513


Prove the following result-

tan-1 6316=sin-1 513+cos-1 35


Evaluate: 

cot(sin-1 34+sec-1 43)


If cos-1x+cos-1y=π4,  find the value of sin-1x+sin-1y


sin(sin-1 15+cos-1x)=1


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 (879), x > 0


Solve the following equation for x:

tan-1(2+x)+tan-1(2-x)=tan-1 23,where x<-3or,x>3


Solve the equation cos-1 ax-cos-1 bx=cos-1 1b-cos-1 1a


2tan-1 34-tan-1 1731=π4


Solve the following equation for x:

tan-1 14+2tan-1 15+tan-1 16+tan-1 1x=π4


Prove that 2tan-1(a-ba+btan θ2)=cos-1(acosθ+ba+bcosθ)


If x > 1, then write the value of sin−1 (2x1+x2) in terms of tan−1 x.


Write the value of cos−1 (tan3π4)


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the principal value of cos1(cos2π3)+sin1(sin2π3)


Write the principal value of cos1(cos680)


Write the value of sin1(sin3π5)


Wnte the value of the expression tan(sin1x+cos1x2), when x=32


If cos(tan1x+cot13)=0 , find the value of x.

 

The positive integral solution of the equation
tan1x+cos1y1+y2=sin1310 is 


The number of solutions of the equation tan12x+tan13x=π4 is

 


If cos1x2+cos1y3=θ,  then 9x2 − 12xy cos θ + 4y2 is equal to


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


It tan1x+1x1+tan1x1x=tan1   (−7), then the value of x is

 


The value of tan(cos135+tan114)

 


If y = sin (sin x), prove that d2ydx2+tanxdydx+ycos2x=0.


Find the domain of sec-1(3x-1).


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.