English

Write the Principal Value of Cos − 1 ( Cos 2 π 3 ) + Sin − 1 ( Sin 2 π 3 ) - Mathematics

Advertisements
Advertisements

Question

Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]

Solution

\[\text{We have}, \cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right) = \cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left\{ \sin\left( \pi - \frac{\pi}{3} \right) \right\} \left[ \because \left( \pi - \frac{2\pi}{3} \right) \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ = \cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left\{ \sin\left( \frac{\pi}{3} \right) \right\}\]
\[ = \frac{2\pi}{3} + \frac{\pi}{3}\]
\[ = \pi\]
∴ \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right) = \pi\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 118]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 40 | Page 118

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin3)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×